بررسی عملکرد قاب‌های خمشی فولادی با مهاربند‌های زانویی تحت اثر برخورد وسایل نقلیه

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه عمران، واحد گرمسار، دانشگاه آزاد اسلامی، گرمسار، ایران

2 دانشجوی دکترای تخصصی، گروه عمران، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران

3 دانشجوی دکترای تخصصی، گروه عمران، دانشگاه سیستان و بلوچستان، زاهدان، ایران

چکیده

ساختمان‌ها در طول بهره‌برداری خود تحت تأثیر انواع نیروهای طبیعی و غیرطبیعی قرار دارند. ضربه‌ی ناشی از برخورد وسایل نقلیه به سازه‌ها جز نیروهای خارجی غیر طبیعی محسوب می‌گردد که معمولاً در طراحی سازه‌ها لحاظ نمی‌شود. با گسترش حملات تروریستی در نقاط مختلف جهان، مطالعه‌ی رفتار سازه‌ها در مقابل بارگذاری‌های غیرمتعارف مانند انفجار و ضربه‌ی ناشی از برخورد وسیله‌ی نقلیه مورد توجه قرار گرفته است. در این تحقیق، قاب‌های خمشی فولادی با مهاربندهای زانویی (2، 5 و 8 طبقه) به‌صورت دوبعدی بر اساس ضوابط آیین‌نامه‌ای در نرم‌افزار SAP 2000 طراحی و سپس تحلیل  تاریخچه زمانی آن‌ها تحت ضربه‌ی ناشی از برخورد وسیله‌ی نقلیه‌ی سبک توسط نرم افزار SeismoStruct  انجام شده است. پاسخ‌های جابجایی، دریفت، شتاب طبقات و برش پایه‌ی قاب‌ها تحت اثر ضربه‌ی ناشی از برخورد وسیله‌ی نقلیه‌ی سبک با سرعت‌های مختلف ( از 10 تا 120 کیلومتر بر ساعت) مقایسه شده و نتایج نشان می‌دهد که سرعت‌های 90، 120 و 100 کیلومتر بر ساعت به ترتیب باعث رخداد ناپایداری دینامیکی در قاب‌های 2، 5 و 8 طبقه شده است. همچنین نتایج بیانگر سطح عملکرد قاب‌های مورد نظر بر اساس  حداکثر دریفت طبقات  و برای سرعت‌های مختلف برخورد است. به عنوان نمونه در بازه‌ی سرعت برخورد 50 الی 80 کیلومتر بر ساعت، سطح عملکرد قاب 2 طبقه "ایمنی جانی" بوده است و در مورد قاب 8 طبقه، سرعت‌های 10 و 20 کیلومتر بر ساعت سطح عملکرد "استفاده‌ی بلادرنگ"را فراهم کرده است.

کلیدواژه‌ها


عنوان مقاله [English]

The Performance Investigation of Steel Moment Frames With Knee Braces Subjected to Vehicle Collision

نویسندگان [English]

  • Kourosh Mehdizadeh 1
  • Abbasali Sadeghi 2
  • Seyede Vahide Hashemi 3
1 Department of Civil Engineering, Garmsar Branch, Islamic Azad University, Garmsar, Iran
2 Ph.D. Candidate, Department of Civil Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
3 Ph.D. Candidate, Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran
چکیده [English]

Buildings are always affected by a variety of natural and abnormal forces during their operation. Impact of vehicle collision is an abnormal load which is not usually considered in the design of structures. With the spread of terrorist attacks in many parts of the world, investigation the behavior of structures against unusual loadings, such as blast or vehicle collision has been considered. In this study, steel moment frames with knee braces (2, 5 and 8 story) were designed by SAP 2000 software in two-dimensional according to codes guidelines, and then time history analysis of them was performed by SeismoStruct software subjected to impact of light vehicle collision. The responses such as displacement, drift, acceleration of the stories and the base shear of the frames were compared under the effect of light vehicle collision impact with different velocity (from 10 to 120 km/hr). The results show that the velocity 90, 120 and 100 km/hr causes dynamic instability state in frames with 2, 5 and 8 story respectively. The results also show that the performance level of the mentioned frames based on the maximum stories drift and for the different velocities of impact. For example, in the range of impact velocity of 50 to 80 km/hr, the performance level of 2-story frame was "Life Safety" and regarding to 8-story frame, the performance level was "Immediate Occupancy" for velocities 10 and 20 km/hr.

کلیدواژه‌ها [English]

  • Impact
  • Light Vehicle
  • Moment Frame
  • Knee brace
  • Dynamic Instability
  • SAP2000 software
  • Seismostruct software
[1] Mehdizadeh, K, Karamodin, A. (2018). Evaluation the possibility of the occurrence of progressive collapse in steel moment frames (ordinary, intermediate and special) due to sudden column removal, Journal of Structural and Construction Engineering (JSCE),5 (3), Pages 85-105. https://doi.org/10.22065/jsce.2017.89028.1231
[2] Lotfollahi M, Mofid M. (2006). On the characteristics of new ductile knee bracing systems, Journal of Constructional Steel Research, 62 (3), Pages 271-281. https://doi.org/10.1016/j.jcsr.2005.07.005
[3] Habibullah, A. (2018). SAP-Three Dimensional Analysis of Building Systems. Manual. Computers and Structures Inc., Berkeley, California. https://www.csiamerica.com/
[4] SeismoStruct (2018). A computer program for static and dynamic nonlinear analysis of framed structures, SeismoSoft's Ltd. https://www.seismosoft.com/
[5] ­Szyniszewski, S. (2009). Probabilistic Approach to Progressive Collapse Prevention. Physics Based Simulations. Structures Congress, Austin, Texas, United States: ASCE, Pages 2836-2843.
[6] Liu, M. (2011). Progressive collapse design of seismic steel frames using structural optimization. Journal of Constructional Steel Research,  67 (3), Pages 322–332. https://doi.org/10.1016/j.jcsr.2010.10.009
[7] Hadianfard M. A, Wassegh M, Soltani Mohammdi M. (2012). Linear and Nonlinear Analysis of Progressive Collapse for Seismic Designed Steel Moment Frame, 14th International Conference on Computing in Civil and Building Engineering, Moscow, Russia.
[8] Morouri, S. and Hadidi, A. (2012). Assessment the behaviour of 3D steel moment frames subjected to progressive collapse by nonlinear dynamic procedure. Trends in Advanced Science and Engineering.
[9] Unified Facilities Criteria (UFC4-023-03). (2009). Design of Buildings to Resist Progressive Collapse, Washington, D.C.
[10]  Ruirui, S., Zhaohui, H. and Ian, B. (2013).  Progressive collapse analysis of steel structures under fire conditions. PhD Research Student, Department of Civil and Structural Engineering, the University of Sheffield, Sheffield.
[11] Tavakoli, H.R and Rashidi Alashti.A, A. (2013). Evaluation of progressive collapse potential of multi-story moment resisting steel frame buildings under lateral loading. Sharif University of Technology, Journal of Scientia Iranica. 20(1), Pages 77-86. https://doi.org/10.1016/j.scient.2012.12.008
[12] Nateghi, F.A. and Parsaeifard, N.  (2013). Studying the effect of initial damage on failure probability of one story steel buildings. Iranica Journal of Energy & Environment 4(3), Pages 258-264. https://doi.org/10.5829/idosi.ijee.2013.04.03.12
[13] Mashhadiali, N. and Kheyroddin, A. (2014). Progressive collapse assessment of new hexagrid structural system for tall buildings. Structural Design of Tall and Special Buildings, 23 (12), Pages 947–961. https://doi.org/10.1002/tal.1097
[14] Hosseini, M., Fanaie, N. and Yousefi, A.M. (2014). Studying the vulnerability of steel moment resistant frames subjected to progressive collapse, Indian Journal of Science and Technology, 7(3), Pages 335-342.
[15] U.S. General Service Administrations (GSA). (2003). Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects, Washington, D.C, US.
[16] DOD, Design of Buildings to Resist Progressive Collapse (UFC 4-023-03), (2009). Washington DC, US.
[17] Jinkoo, K. and Hyungoo. K. (2014). Progressive Collapse of Steel Moment Frames Subjected to Vehicle Impact, Journal of Performance of Constructed Facilities, 29(6). https://doi.org/10.1061/(ASCE)CF.1943-5509.0000665
[18] Chung, C.H. Lee, J. Ho Gil. J. (2014). Structural performance evaluation of a precast prefabricated bridge column under vehicle impact loading. Structure and Infrastructure Engineering Maintenance, Management, Life-Cycle Design and Performance. Volume 10, Issue 6, p. 777-791. https://doi.org/10.1080/15732479.2013.767841
[19] ­Pavel Jiříček. Marek Foglar, (2016). Numerical analysis of a bridge pier subjected to truck impact, Journal of Structural Concrete, Volume17, Issue6, Pages 936-946. https://doi.org/10.1002/suco.201500184
[20] Jinkoo, K. and Hyungoo. K. (2017). Response of a steel column-footing connection subjected to vehicle impact, Journal of Structural Engineering & Mechanics, 63(1), Pages 125-136. https://doi.org/10.12989/sem.2017.63.1.125
[21] Deyuan Zhou, Ruiwen Li, Juan Wang, and Changtuan Guo. (2017). Study on Impact Behavior and Impact Force of Bridge Pier Subjected to Vehicle Collision, Shock and Vibration, vol. 2017, Article ID 7085392, 12 pages.
[22] Javidan, M.M. Hyungoo. K, Daigoro, I. Jinkoo K. (2018). Computationally efficient framework for probabilistic collapse
 analysis of structures under extreme actions, Journal of Engineering Structures, 17(2), Pages 440-452. https://doi.org/10.1016/j.engstruct.2018.06.022
[23] Wuchao Zhao, Jiang Qian and Juan Wang, (2018). Performance of bridge structures under heavy goods vehicle impact, Computers and Concrete,   Volume 22, Number 6, December 2018, pages 515-525
https://doi.org/10.12989/cac.2018.22.6.515
[24] Leelataviwat S., B. Suksan, J. Srechai, P. S Warnitchai. (2011). Seismic Design and Behavior of Ductile Knee -Braced Moment Frames, Journal of structural engineering, ASCE, Pages 579-588. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000301
[25] INBC. (2013). Design Loads for Buildings. Tehran: Ministry of Housing and Urban Development, Iranian National
Building Code, Part 6. (In Persian).
[26] INBC. (2013). Design and Construction of Steel Structures. Tehran: Ministry of Housing and Urban Development,
Iranian National Building Code, Part 10. (In Persian).
[27] BHRC. (2014). Iranian code of practice for seismic resistant design of buildings. Tehran: Building and Housing Research Centre, Standard No. 2800. (In Persian).
[28] Chopra, A.K. (2007). Dynamics of Structures, Theory and applications to Earthquake Engineering. Higher Education Press, Beijing.
[29] Halliday, D., Resnick, R. and Walker, J. (2013). Fundamentals of Physics Extended. 10th Edition.
[30] FEMA-356 (2000). Pre-standard and commentary of seismic rehabilitation of building, Federal Emergency Management Agency, Washington DC, USA.