بررسی رفتار پل‌های قدیمی راه‌آهن تحت اثر حرکت قطار پرسرعت پردیس

نوع مقاله : علمی - پژوهشی

نویسندگان

1 کارشناس ارشد مهندسی سازه، دانشکده مهندسی، دانشگاه اراک، اراک، ایران

2 استادیار مهندسی سازه، دانشکده مهندسی، دانشگاه اراک، اراک، ایران

چکیده

در شبکه راه‌آهن کشور 36000 پل وجود دارد که از میان آنها در حدود 3700 پل قوسی بنایی در حال سرویس‌دهی در شبکه راه‌آهن هستند. با توجه به قدمت 80 ساله شبکه راه‌آهن، این پل‌ها برای بارهای سرویس آن زمان (قطارهای با سرعت پایین) طراحی شده‌اند و در حال حاضر برای قطارهای با سرعت حداکثر 100 کیلومتر بر ساعت در حال سرویس‌دهی هستند. نظر به اهمیت قطارهای سریع‌السیر در صنعت ریلی و با توجه به اینکه بیشتر کشورهای توسعه یافته دارای شبکه راه‌آهن سریع‌السیر هستند، وجود این قطارها در کشور ضروری به نظر می‌رسد. به دلیل محدودیت‌های میدانی و اقتصادی جایگزینی این پل‌ها، ارزیابی رفتار آنها تحت اثر حرکت قطارهای پرسرعت امری ضروری است. هدف از مطالعه حاضر، بررسی رفتار پل‌های قوسی بنایی تحت اثر حرکت تنها قطار پرسرعت موجود در کشور (قطار پردیس) به وسیله ارزیابی دو پل قوسی بتنی غیرمسلح واقع در کیلومتر 23 و 24 راه‌آهن تهران- قم است. با توجه به رفتار پیچیده این سازه‌ها، انجام آزمایش‌های میدانی جهت ارزیابی رفتار آنها ضروری است، اما به علت تعدد این پل‌ها امکان انجام آزمایش‌های میدانی بر روی همه آنها وجود ندارد. بنابراین جهت مطالعه رفتار این پل‌ها، شبیه‌سازی دقیق آنها ضروری به نظر می‌رسد. بنابراین در مطالعه حاضر از روش اجزای محدود جهت مدل‌سازی این سازه‌ها استفاده شده است. جهت به‌هنگام‌سازی مدل‌های عددی، جابجایی کلید قوس تحت بار استاتیکی و حرکت دیزل و همچنین فرکانس سه مود اول پل‌ها به عنوان معیار کالیبراسیون انتخاب شده‌اند. با تهیه 13 مدل از قطار پرسرعت پردیس، به صورت بار متحرک و با سرعت 150 کیلومتر بر ساعت از روی مدل عددی عبور داده شده و در نهایت نتایج حاصل از 26 عدد تحلیل دینامیکی مورد ارزیابی قرار گرفته است.  نتایج نشان می‌دهد که این پل‌ها می‌توانند با ایجاد تمهیداتی دارای رفتار قابل قبولی در برابر حرکت قطار پرسرعت پردیس باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment of Old Railway Bridges Under the Pardis High-Speed Train

نویسندگان [English]

  • Peyman Azimi 1
  • Mahdi Yazdani 2
1 M.Sc. in structural engineering, Faculty of engineering, Arak university, Arak, Iran
2 Assistant professor, faculty of engineering, Arak university, Arak, Iran
چکیده [English]

There are numerous old arch bridges in Iran that have been used as railway bridges for more than eighty years. In Iran's railway network, there are about 3,700 bridges which all of these have been designed based on service load in that time (low-speed trains) and are still serving for trains at maximum speed of 100 km/h. Using of high-speed trains has been spread all over the world in the last two decades. In recent years, the use of high-speed trains is necessary in the Iran. It is not possible at all to replace old masonry arch bridges due to field and economic constraints, so it is necessary to evaluate the dynamic behaviour of these bridges under the high-speed trains. To evaluate complex behavior of these bridges, results of field tests are required. Since it is not possible to perform field tests for all arch bridges, these structures should be simulated correctly by computers for structural assessment. The present study investigates two plain concrete arch bridge which are located in kilometer 23 and 24 of the old Tehran-Qom railway. The numerical model of the bridge is established in accordance with detailed geometrical properties of the bridges. The numerical model has been validated based on the existing experimental results. In the model updating procedure, the vertical deflection at the crown under static loading and the movement of the six-axle train by 60 and 80 km/h, as well as the first three modes of the bridges were selected as a calibration criterion. In the second step, different geometrical of Pardis high-speed train are used and totally 13 geometrical models have been detected and investigated. By using the finite element method and the macro-modelling approach, the km-23 and km-24 bridges were simulated and totally 26-time history dynamic analyses have been conducted. Dynamic behaviour of the bridge under moving load model of Pardis trains at speeds of 150km/h have been assessed. Finally, deflection and acceleration responses for all 26 dynamic analyses at the crown of the bridges have been extracted and compared. These analyses are conducted to the aim of finding opportunities and constraints in using railway masonry arch bridges in the Iran as it is necessary to use existing rail lines on the rail network, due to the high cost of the construction of new ones and the need to know the existing structures such as bridges and their properties under the impact of high-speed trains. A realistic prediction of the structure's response helps a rational operation of the bridges in the service, that’s why the correct understanding of the dynamic behaviour of railway bridges is essential. The results of present study indicate that these bridges have good behaviour under high-speed trains.

کلیدواژه‌ها [English]

  • Masonry arch bridge
  • finite element modeling
  • Geometrical properties of high-speed trains
  • Pardis train
  • Dynamic assessment
[1]           P. J. Fanning and T. E. Boothby, "Three-dimensional modelling and full-scale testing of stone arch bridges," Computers and Structures, vol. 79, pp. 2645-2662, 2001.
[2]           J. M. C. Kishen, A. Ramaswamy, and C. S. Manohar, "Safety assessment of a masonry arch bridge: Field testing and simulations," Journal of Bridge Engineering, vol. 18, pp. 162-171, 2013.
[3]           A. Bayraktar, T. Türker, and A. C. Altunişik, "Experimental frequencies and damping ratios for historical masonry arch bridges," Construction and Building Materials, vol. 75, pp. 234-241, 2015.
[4]           M. S. Marefat, E. Ghahremani-Gargary, and S. Ataei, "Load test of a plain concrete arch railway bridge of 20-m span," Construction and Building Materials, vol. 18, pp. 661-667, 2004.
[5]           S. Ataei, M. Jahangiri Alikamar, and V. Kazemiashtiani, "Evaluation of axle load increasing on a monumental masonry arch bridge based on field load testing," Construction and Building Materials, vol. 116, pp. 413-421, 2016/07/30/ 2016.
[6]           G. Frunzio, M. Monaco, and A. Gesualdo, "3D FEM analysis of a roman arch bridge," Historical constructions, pp. 591-598, 2001.
[7]           A. Cavicchi and L. Gambarotta, "Collapse analysis of masonry bridges taking into account arch–fill interaction," Engineering Structures, vol. 27, pp. 605-615, 2005.
[8]           P. Kumar and N. M. Bhandari, "Non-linear finite element analysis of masonry arches for prediction of collapse load," Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), vol. 15, pp. 166-174, 2005.
[9]           G. Milani and P. B. Lourenço, "3D non-linear behavior of masonry arch bridges," Computers and Structures, vol. 110-111, pp. 133-150, 2012.
[10]         A. Moazam, N. Hasani, and M. Yazdani, "Three-dimensional modelling for seismic assessment of plain concrete arch bridges," Proceedings of the Institution of Civil Engineers - Civil Engineering, vol. 0, pp. 1-36, 2018.
[11]         V. Jahangiri, M. Yazdani, and M. S. Marefat, "Intensity measures for the seismic response assessment of plain concrete arch bridges," Bulletin of Earthquake Engineering, vol. 16, pp. 4225-4248, 2018/09/01 2018.
[12]         M. S. Marefat, M. Yazdani, and M. Jafari, "Seismic assessment of small to medium spans plain concrete arch bridges," European Journal of Environmental and Civil Engineering, pp. 1-22, 2017.
[13]         a. Mahmoudi Moazam, N. Hasani, and M. Yazdani, "3D simulation of railway bridges for estimating fundamental frequency using geometrical and mechanical properties," Advabces in Computational Design, vol. 2, pp. 257-271, 2017.
[14]         L. Pelà, A. Aprile, and A. Benedetti, "Comparison of seismic assessment procedures for masonry arch bridges," Construction and Building Materials, vol. 38, pp. 381-394, 2013.
[15]         A. Mahmoudi Moazam, N. Hasani, and M. Yazdani, "Incremental dynamic analysis of small to medium spans plain concrete arch bridges," Engineering Failure Analysis, vol. 91, pp. 12-27, 9// 2018.
[16]         S. Ataei and A. Miri, "Investigating dynamic amplification factor of railway masonry arch bridges through dynamic load tests," Construction and Building Materials, vol. 183, pp. 693-705, 2018.
[17]         S. Ataei, A. Miri, and M. Tajalli, "Dynamic load testing of a railway masonry arch bridge: A case study of Babak Bridge," Scientia Iranica, vol. 24, pp. 1834-1842, 2017.
[18]         S. Ataei, A. Miri, and M. Jahangiri, "Assessment of load carrying capacity enhancement of an open spandrel masonry arch bridge by dynamic load testing," International Journal of Architectural Heritage, vol. 11, pp. 1086-1100, 2017.
[19]         R. Calcada, R. Delgado, F. Gabaldon, and J. Goicolea, "Dynamics of High-Speed Railway Bridges," ed: CRC Press/Belkema, London, 2009.
[20]         J. Kwark, E. Choi, Y. Kim, B. Kim, and S. Kim, "Dynamic behavior of two-span continuous concrete bridges under moving high-speed train," Computers & structures, vol. 82, pp. 463-474, 2004.
[21]         D. Gorbatjuk, G. Brandstetter, and J. Fink, "Investigations for Simplified Consideration of Train-Bridge-Interaction based on Railjet High-speed Train," Procedia engineering, vol. 156, pp. 116-123, 2016.
[22]         M. Brunetti, J. Ciambella, L. Evangelista, E. Lofrano, A. Paolone, and A. Vittozzi, "Experimental results in damping evaluation of a high-speed railway bridge," Procedia Engineering, vol. 199, pp. 3015-3020, 2017/01/01/ 2017.
[23]         W. Lacarbonara and V. Colone, "Dynamic response of arch bridges traversed by high-speed trains," Journal of Sound and Vibration, vol. 304, pp. 72-90, 2007/07/10/ 2007.
[24]         N. Hu, G.-L. Dai, B. Yan, and K. Liu, "Recent development of design and construction of medium and long span high-speed railway bridges in China," Engineering Structures, vol. 74, pp. 233-241, 2014/09/01/ 2014.
[25]         L. Jiang, X. Kang, C. Li, and G. Shao, "Earthquake response of continuous girder bridge for high-speed railway: A shaking table test study," Engineering Structures, vol. 180, pp. 249-263, 2019/02/01/ 2019.
[26]         K. Liu, Q. Su, P. Ni, C. Zhou, W. Zhao, and F. Yue, "Evaluation on the dynamic performance of bridge approach backfilled with fibre reinforced lightweight concrete under high-speed train loading," Computers and Geotechnics, vol. 104, pp. 42-53, 2018/12/01/ 2018.
[27]         T. Wu, Y. Zou, Y. F. Chen, H. Guo, and Z. Yu, "Recent developments of high-speed railway bridges in China AU - He, Xuhui," Structure and Infrastructure Engineering, vol. 13, pp. 1584-1595, 2017/12/02 2017.
[28]         C. Y. Xia, H. Xia, and G. De Roeck, "Dynamic response of a train–bridge system under collision loads and running safety evaluation of high-speed trains," Computers & Structures, vol. 140, pp. 23-38, 2014/07/30 2014.
[29]         H. Xia, G. De Roeck, N. Zhang, and J. Maeck, "Experimental analysis of a high-speed railway bridge under Thalys trains," Journal of Sound and Vibration, vol. 268, pp. 103-113, 2003.
[30]         H. Xia and N. Zhang, "Dynamic analysis of railway bridge under high-speed trains," Computers & Structures, vol. 83, pp. 1891-1901, 2005/09/01/ 2005.
[31]         H. Xia, N. Zhang, and G. De Roeck, "Dynamic analysis of high speed railway bridge under articulated trains," Computers & structures, vol. 81, pp. 24 2467-2478, 2003.
[32]         N. Zhang, H. Xia, and W. Guo, "Vehicle–bridge interaction analysis under high-speed trains," Journal of Sound and Vibration, vol. 309, pp. 407-425, 2008/01/22/ 2008.
[33]         P. Galvín, A. Romero, E. Moliner, and M. D. Martínez-Rodrigo, "Two FE models to analyse the dynamic response of short span simply-supported oblique high-speed railway bridges: Comparison and experimental validation," Engineering Structures, vol. 167, pp. 48-64, 2018/07/15/ 2018.
[34]         L. Frýba, "A rough assessment of railway bridges for high speed trains," Engineering Structures, vol. 23, pp. 548-556, 2001/05/01/ 2001.
[35]         J. Li and M. Su, "THE RESONANT VIBRATION FOR A SIMPLY SUPPORTED GIRDER BRIDGE UNDER HIGH-SPEED TRAINS," Journal of Sound and Vibration, vol. 224, pp. 897-915, 1999/07/29/ 1999.
[36]         K. Matsuoka, A. Collina, and M. Sogabe, "Dynamic simulation and critical assessment of a composite bridge in high-speed railway," Procedia Engineering, vol. 199, pp. 3027-3032, 2017/01/01/ 2017.
[37]         S. Schneider and S. Marx, "Design of railway bridges for dynamic loads due to high-speed traffic," Engineering Structures, vol. 174, pp. 396-406, 2018/11/01/ 2018.
[38]         C. Somaschini, K. Matsuoka, and A. Collina, "Experimental analysis of a composite bridge under high-speed train passages," Procedia Engineering, vol. 199, pp. 3071-3076, 2017/01/01/ 2017.
[39]         W.-F. Chen, Plasticity in reinforced concrete: J. Ross Publishing, 2007.
[40]         A. Committee and I. O. f. Standardization, "Building code requirements for structural concrete (ACI 318-08) and commentary," 2008.
[41]         M. Liu and D. G. Gorman, "Formulation of Rayleigh damping and its extensions," Computers & structures, vol. 57, pp. 277-285, 1995.
[42]         A. Bayraktar, A. C. Altuniik, F. Birinci, B. Sevim, and T. Türker, "Finite-element analysis and vibration testing of a two-span masonry arch bridge," Journal of Performance of Constructed Facilities, vol. 24, pp. 46-52, 2010.
[43]         O. m. Siemens Transportation System, Trainset Iran DH4-1 PARADISE, Project:Y.5213-12 / F.0532,2005.
[44]         U. Code, "776-1R (1994), Loads to be considered in railway bridge design," fifth edition ed: International Union of Railway, 2006.