تاثیر بستر الاستیک وینکلر بر ارتعاش آزاد تیر ماهیچه‌ای براساس تئوری الاستیسیته غیرمحلی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار گروه مهندسی عمران، دانشکده مهندسی، دانشگاه کاشان ،کاشان، ایران

2 دانشجوی کارشناسی ارشد مهندسی سازه، گروه مهندسی عمران، دانشکده مهندسی، دانشگاه کاشان، کاشان، ایران

3 استاد دانشکده مهندسی عمران، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

در مقاله پیش‌رو، ارتعاش آزاد تیر با مقطع متغیر متکی بر بستر الاستیک وینکلر و با در نظر گرفتن تئوری الاستیسیته غیرمحلی مورد مطالعه قرار گرفته است. روند کار به این صورت است که در مرحله نخست، معادله حرکت براساس فرضیه تغییر شکل‌های کوچک و مدل الاستیسیته غیرمحلی ارینگن به کمک اصل همیلتون به‌دست می‌آید. در ادامه، از روش نیمه تحلیلی بسط سری‌های توانی برای حل معادله دیفرانسیل ارتعاش آزاد عضو غیرمنشوری متکی بر بستر الاستیک استفاده شده است و با جایگذاری شرایط مرزی (دو شرط برای هر انتهای عضو) و حل مسئله مقادیر ویژه، مقدار فرکانس طبیعی ارتعاش و همچنین فرم تغییر شکل عضو مدنظر تحت آنالیز ارتعاش آزاد نامیرا تعیین می‌گردد. در انتها نتایج حاصل از این تحقیق در خصوص تیر همگن با مقطع غیریکنواخت با نتایج دیگر تحقیقات جهت بررسی صحت و دقت محاسبات مقایسه گردیده و تاثیر پارامترهای مختلفی همچون پارامتر ارینگن، ضریب باریک شوندگی مقطع و بستر الاستیک وینکلر روی ارتعاش آزاد بدون بعد تیر با شرایط مرزی مختلف به تفصیل بررسی شده است. نتایج بدست آمده از این پژوهش نشان می‌دهند که با افزایش پارامتر ارینگن و باریک شدگی نیم‌رخ عضو مقدار فرکانس طبیعی بدون بعد کاهش می‌یابد، در حالی که با افزایش ثابت فنری نوع وینکلر در بازه استفاده شده در این مقاله فرکانس ارتعاشی به شدت افزایش می‌یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Winkler Elastic Foundation on Free Vibration of Tapered Beam Based on Non-Local Elasticity Theory

نویسندگان [English]

  • Masoumeh Soltani 1
  • Masooma Mohammadi 2
  • Behrouz Asgarian 3
1 Assistant Professor, Department of civil engineering, University of Kashan, Kashan, Iran
2 MSc student in structural engineering, Department of civil engineering, University of Kashan, Kashan, Iran
3 Professor, Faculty of civil engineering, K. N. Toosi University of Technology, Tehran, Iran
چکیده [English]

In this paper, the influence of Winkler type elastic foundation on the free vibration behavior of non-local Euler-Bernoulli beam with varying cross-section is semi-analytically investigated. For this purpose, the governing equation of motion is derived based on nonlocal elasticity Eringen’s model and Hamilton’s principle. The power series approximation is applied to solve the fourth order differential equation, since in the presence of variable cross-section, stiffness quantities are not constant. Based on this semi-analytical methodology, displacement component and cross-section properties should be expanded in terms of power series of a known degree. The natural frequencies of non-local beam with variable cross-section are then derived by imposing the boundary conditions and solving the eigenvalue problem. The results of this research are compared with the obtained results by other researchers and there is a good agreement. At the end, the effects of different parameters such as: end conditions, nonlocal Eringen’s parameter, tapering ratio and Winkler spring constant on non-dimensional natural frequency of nano-beam are studied in detail. The outcomes of this study indicate that the increase of nonlocal parameter and non-uniformity ratio causes to decrease the dimensionless natural frequency. However, with increasing the Winkler elastic constant, the non-local frequencies increase. Furthermore, it is shown that the effect of Winkler elastic foundation is predominate than the tapering ratio and Eringen’s parameter on the natural frequency of nano-beams.

کلیدواژه‌ها [English]

  • Natural frequency Non
  • local elasticity theory Tapered beam Elastic foundation Power series method
[1] Eringen, A.C. (1983), On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 54, 4703-4710.
[2] Sundek, L. (2003), Column Buckling of Multiwalled Carbon Nanotubes Using Nonlocal Continuum Mechanics, Journal of Applied Physics, 94 (11), 7281-7287.
[3] Pisano, A. and Fuschi, P. (2003). Closed Form Solution for a Nonlocal Elastic Bar in Tension. International Journal of Solids and Structures, 40 (1), 13-23.
[4] Wang CM, Zhang YY, He, XQ. (2007). Vibration of nonlocal Timoshenko beams. Nanotechnology. 18(10). 105401.
[5] Reddy, J. (2007). Nonlocal Theories for Bending, Buckling and Vibration of Beams, International Journal of Engineering Science, 45(2). 288-307.
[6] Pradhan, S. C. and Sarkar, A. (2009). Analyses of Tapered Fgm Beams with Nonlocal Theory. Structural Engineering and Mechanics, 32(6). 811-833.
[7] Pradhan S. C and Phadikar JK. (2009). Bending, Buckling and Vibration Analyses of Nonhomogeneous Nanotubes Using GDQ and Nonlocal Elasticity Theory. Structural Engineering and Mechanics, 33(2), 193-213.
[8] Phadikar, J. and Pradhan, S. (2010). Vibrational Formulation and Finite Element Analysis for Nonlocal Elastic Nano beams and Nano plates. Computational Materials Science, 49(3), 492-499.
[9] Civalek, O. Demir, C. (2011). Bending Analysis of Microtubules Using Nonlocal Euler–Bernoulli Beam Theory, Applied Mathematical Modelling, 35, 053- 067.
[10] Rajarshi, Maitra. Supratik, Bose (2012). Post Buckling Behavior of a Nano Beam Considering Both the Surface and Nonlocal Effects, International Journal of Advancements in Research & Technology, 1, 1-5.
[11] Mohammadimehr, M., Salamis, M. Nasiri, H. Afshari, H. (2014), Thermal effect on deflection, critical buckling load and vibration of nonlocal Euler-Bernoulli beam on Pasternak foundation using Ritz method, Modares Mechanical Engineering Journal, 13(11), 64-76 (in Persian)
[12] Rajasekaran, S., & Khaniki, H. B. (2017). “Bending, buckling and vibration of small-scale tapered beams “. International Journal of Engineering Science, 120, 172-188. ‏
[13] Hosseini Hashemi, S., & Bakhshi Khaniki, H. (2017). “Vibration analysis of a timoshenko non-uniform nanobeam based on nonlocal theory: An analytical solution “. International Journal of Nano Dimension, 8(1), 70-81. ‏
[14] Khaniki, H. B., Hosseini-Hashemi, S., & Nezamabadi, A. (2018). “Buckling analysis of nonuniform nonlocal strain gradient beams using generalized differential quadrature method “. Alexandria engineering journal, 57(3), 1361-1368. ‏
[15] Rajasekaran, S., & Bakhshi Khaniki, H. (2019). “Finite element static and dynamic analysis of axially functionally graded nonuniform small-scale beams based on nonlocal strain gradient theory “. Mechanics of Advanced Materials and Structures, 26(14), 1245-1259. ‏
 [16] Eltaher, M.A. Amal, E. Alshorbagy, F.F. (2013). Vibration Analysis of Euler–Bernoulli Nanobeams by Using Finite Element Method, Applied Mathematical Modelling, 37, 4787- 4799.
[17] Khaniki, H. B., & Hosseini-Hashemi, S. (2017). “Dynamic transverse vibration characteristics of nonuniform nonlocal strain gradient beams using the generalized differential quadrature method “. The European Physical Journal Plus, 132(11), 500. ‏
[18] Hashemi, S. H., & Khaniki, H. B. (2016). “Analytical solution for free vibration of a variable cross-section nonlocal nanobeam“. International Journal of Engineering-Transactions B: Applications, 29(5), 688-696. ‏
[19] Khaniki, H. B., Hashemi, S. H., & Khaniki, H. B. (2018). “Comparison between using generalized differential quadrature method and analytical solution in analyzing vibration behavior of nonuniform nanobeam systems “. Characterization and Application of Nanomaterials, 1(2). ‏
 [20] Torabi, K. Dastgerdi, J.N. (2012). An Analytical Method for Free Vibration Analysis of Timoshenko Beam Theory Applied to Cracked Nanobeams Using a Nonlocal Elasticity Model, Thin Solid Films, 520(21), 6595-6602.
[21] Hasani S. M. R., Mahmoudabadi M. (2018), Compare Elastic Modulus of Nanocomposites Reinforced with CNT in Analytical Methods, Finite Element and Equivalent Spring. Journal of Structural and Constructional Engineering. 5(3): 108-119. (In Persian)
[22] Winkler E. “Die Lehre von der Elasticitaet und Festigkeit”, Prag Dominicus, 1867.
[23] Eisenberger M and Clastornik J. (1987) “Vibrations and buckling of a beam on a variable Winkler elastic foundation”, Journal of Engineering Mechanics, Journal of Sound and Vibration; 115(2): 233-241.
[24] Fallah A and Aghdam M. M. (2011). “Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation”, European Journal of Mechanics A/Solids, 30: 571-583.
[25] Tsiatas G.C. (2014) “A new efficient method to evaluate exact stiffness and mass matrices of non-uniform beams resting on an elastic foundation”, Archive of Applied Mechanic. 84: 615–623.
[26] Soltani M. and Mohri F., Stability and vibration analyses of tapered columns resting on one or two-parameter elastic foundations, Numerical methods in civil engineering. 2 (2016) 57-66.
[27] A. Shahba, R. Attarnejad, M. Tavanaie Marvi, S. Hajilar, “Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions”, Composite: Part B 42 (4): 801-808, (2011).
[28] Shvartsman B. and Majak J. (2016) “Numerical method for stability analysis of functionally graded beams on elastic foundation”, Applied Mathematical Modelling, 44: 3713–3719.
[29] Hasani S. M. R., Mahmoudabadi M., Danaei R. (2018) Investigating effect of boundary conditions on columns’ buckling. Journal of Structural and Constructional Engineering. 5(1): 143-156. (In Persian)
[30] Khaniki, H. B., & Hashemi, S. H. (2017). Free vibration analysis of nonuniform microbeams based on modified couple stress theory: an analytical solution. International Journal of Engineering-Transactions B: Applications, 30(2), 311-320. ‏
 [31] Shafiei, N., Kazemi, M., Safi, M., & Ghadiri, M. (2016). Nonlinear vibration of axially functionally graded non-uniform nanobeams. International Journal of Engineering Science, 106, 77-94. ‏
[32] Ebrahimi, F., & Dashti, S. (2015). Free vibration analysis of a rotating non-uniform functionally graded beam. Steel and Composite Structures, 19(5), 1279-1298. ‏
[33] Al-Sadder S. Z., Exact expression for stability functions of a general non-prismatic beam-column member, Journal of Constructional Steel Research. 60 (2004) 1561-84.
[34] Asgarian B., Soltani M., Mohri F. (2013) “Lateral-torsional buckling of tapered thin-walled beams with arbitrary cross-sections”. Thin-Walled Structures, 62: 96–108.
[35] Soltani M, Asgarian B and Mohri F. (2014) “Elastic instability and free vibration analyses of tapered thin-walled beams by the power series method”, Journal of Constructional Steel Research, (96):106-126.
[36] Soltani M. (2017), “Vibration characteristics of axially loaded tapered Timoshenko beams made of functionally graded materials by the power series method”, Numerical Methods in Civil Engineering; 2(1): 1-14.
[37] Soltani M., Asgarian B. (2019) “Finite element formulation for linear stability analysis of axially functionally graded non-prismatic Timoshenko beam”. International Journal of Structural Stability and dynamics, 19(2): 1950002 (33 pages).
[38] Ghannadpour S.A.M., Mohammadi B. Fazilati, J. (2013). Bending, Buckling and Vibration Problems of Nonlocal Euler Beams Using Ritz Method, Composite Structures, 96, 584-589.
[39] MATLAB Version 7.6. MathWorks Inc, USA, 2008.
[40] Liew, K. M., He, X. Q., & Kitipornchai, S. (2006), “Predicting nanovibration of multi-layered graphene sheets embedded in an elastic matrix”. Acta Materialia., vol. 54, 4229–4236.
[41] Murmu, T., & Pradhan, S. C. (2009). “Buckling analysis of a single-walled carbon nano-tube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM”. Physica E., vol. 4, p. 1232–1239.
[42] Khajeansari A., Baradaran G.H., Yvonnet J. (2012) “An explicit solution for bending of nanowires lying on Winkler–Pasternak elastic substrate medium based on the Euler–Bernoulli beam theory”. International Journal of Engineering Science., vol. 52, p. 115–128.
[43] Soltani, M., & Asgarian, B. (2019) “New hybrid approach for free vibration and stability analyses of axially functionally graded Euler-Bernoulli beams with variable cross-section resting on uniform Winkler-Pasternak foundation”. Latin American Journal of Solids and Structures, 16(3).