تحلیل هزینه سازه ای در چرخه عمر برای تغییرات ظرفیت خمشی تیرهای بتن آرمه در معرض خوردگی میلگرد

نوع مقاله : علمی - پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشگاه صنعتی نوشیروانی بابل، ایران

2 دانشیار گروه سازه و زلزله دانشکده مهندسی عمران، دانشگاه صنعتی نوشیروانی بابل، ایران

چکیده

شرایط مهاجم محیط های خورنده به علت حمله یون های مخرب سبب خوردگی بیش از حد میلگردهای فولادی مدفون در بتن مسلح می شوند که موجب کاهش سطح مقطع فولاد و زوال مقاومت سازه می گردد. تیرهای بتنی در شرایط خوردگی انواع مختلفی از عدم قطعیت در فازهای خوردگی در طول عمر خدمت پذیری دارند، که بایستی مطابق با یک مدل احتمالاتی مناسب در تحلیل قابلیت اعتماد لحاظ گردند. هرچند که بروز پدیده خوردگی غیر قابل اجتناب می باشد، اما می توان با انتخاب روش های مناسب و نیز بهره گیری از نتایج آنالیز های هزینه چرخه عمر، ضمن به تاخیر انداختن خوردگی، هزینه های تعمیر و نگهداری را نیز به حداقل رساند. در این نوشتار در ابتدا مطالب مرتبط با نحوه مدلسازی خوردگی اعمالی در روش اجزا محدود و نتایج حاصل از تغییرات ظرفیت در میزان درصد خوردگی های متفاوت برای تیرهای طراحی شده از دو روش طراحی حالت حدی و طراحی مقاومت، بررسی می شوند. در ادامه ضمن در نظر گرفتن ظرفیت خمشی به عنوان متغییر تصادفی در محاسبه احتمال کاهش ظرفیت مقاطع خورده شده که از طریق تعریف فرایند گاما صورت می پذیرد، به بررسی و بهینه یابی هزینه های ناشی از خرابی در چرخه عمر خدمت پذیری تیرهای بتن مسلح از طریق فرایند تجدید، پرداخته می شود. نتایج حاکی از آن هستند که حدود مجاز خرابی که تعیین کننده آستانه انجام تعمیرات در تیرهای مدلسازی شده می باشند تاثیر بسزایی در احتمال خرابی دارند به طوری که با افزایش 10% حدود 5 سال برای طراحی حالت حدی و5/3 سال برای روش طراحی مقاومت، احتمال وقوع خرابی افزایش می یابد. مقدار بهینه زمان تعمیرات نیز در حدود مجاز خرابی در تیر طراحی شده از روش طراحی مقاومت کمتر از زمان متناظر در روش طراحی حالت حدی می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Structural Life-Cycle Cost Analysis for Variations of Flexural Capacity in RC Beams with Corroded Rebars

نویسندگان [English]

  • Fatemeh Aslani 1
  • Mehdi Dehestani 2
1 Graduate Student, Department of Civil Engineering. Babol Noshirvani University of Technology, Babol, Iran
2 Associate Professor, Department of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran
چکیده [English]

This paper presents an approach for evaluating structural resistance degenerate due to reinforcement corrosion and for predicting future structural performance during the service life of the deteriorating reinforced concrete beams due to corrosive environments. a finite element method is adopted for envisioning the nonlinear flexural behavior of intact and corroded RC beams based on Ultimate strength design method and Load and resistance factor design method approaching this aim, the impact of corrosion of embedded reinforcing element on the flexural capacity of corroded reinforced concrete structures is estimated. A stochastic degeneration model based on gamma process is utilized to assess the probability of failure of structural flexural capacity over the lifetime. Optimal repair planning and maintenance strategies throughout the service life are circumscribed by evaluating the cost for maintenance and the risk of structural failure. Based on the conclusions from the numerical model including two RC beams subjected to reinforcement corrosion the following results are drawn: The permissible deterioration limits that describe the thresholds of the deterioration for the safety and repair requirement, held major effects on the probability of failure. The results from the worked example show that the proposed method can afford reliable predictions for structural strength deterioration and efficiently implement a risk-cost-benefit optimized repair procedure through the service life of the structure affected by bar corrosion. The lifetime distribution increases 5years for LRFD method and 3.5 years for USTD method while allowable limits enlargement 10%. The lifetime distribution extends 5years for LRFD method and 3.5 years for USTD method while allowable limits increase 10%.

کلیدواژه‌ها [English]

  • Rebar corrosion
  • Life cycle cost
  • Reinforced concrete
  • Reliability analysis
  • Finite element
[1] Bertolini, L., Elsener, B., Pedeferri, P., Redaelli, E. and Polder, R., 2013. Corrosion of steel in concrete (Vol. 392). Weinheim, Germany: Wiley-Vch.
[2] Shayanfar, M.A, Ghanooni-Bagha, M., (2010), A Study for Corrosion Effects of Reinforcements on Capacity of Bridge Piers via Nonlinear Finite Element Method, Sharif Journal of Science & Technology Engineering, 28(3), p.59-68
[3] Ahmad, S., 2003. Reinforcement corrosion in concrete structures, its monitoring and service life prediction––a review. Cement and concrete composites25(4-5), pp.459-471.
[4] Shi, X., Xie, N., Fortune, K. and Gong, J., 2012. Durability of steel reinforced concrete in chloride environments: An overview. Construction and Building Materials30, pp.125-138.
[5] Pape, T.M. and Melchers, R.E., 2011. The effects of corrosion on 45-year-old pre-stressed concrete bridge beams. Structure and Infrastructure Engineering7(1-2), pp.101-108.
[6] Shayanfar, M.A., Barkhordari, M.A. and Ghanooni-Bagha, M., 2015. Estimation of corrosion occurrence in RC structure using reliability based PSO optimization. Periodica Polytechnica Civil Engineering59(4), pp.531-542.
[7] Bertolini, L., 2008. Steel corrosion and service life of reinforced concrete structures. Structure and Infrastructure Engineering4(2), pp.123-137.
[8] Tabatabai, H., Pritzl, M.D. and Ghorbanpoor, A., 2009. Evaluation of select methods of corrosion prevention, corrosion control, and repair in reinforced concrete bridges. Wisconsin Highway Research Program.
[9] Knudsen, A., Jensen, F.M., Klinghoffer, O. and Skovsgaard, T., 1998, December. Cost-effective enhancement of durability of concrete structures by intelligent use of stainless steel reinforcement. In Conference on Corrosion and rehabilitation of reinforced concrete structures, Florida.
[10] Hoseinzadeh, E., Yusefzadeh, A., Rahimi, N. and Khorsandi, H., 2013. Evaluation of corrosion and scaling potential of a water treatment plant. Archives of Hygiene Sciences2(2), pp.41-47.
[11] Simioni, P., 2009. Seismic response of reinforced concrete structures affected by reinforcement corrosion (Doctoral dissertation, Technische Universität Braunschweig).
[12] Al-Sulaimani, G.J., Kaleemullah, M. and Basunbul, I.A., 1990. Influence of corrosion and cracking on bond behavior and strength of reinforced concrete members. Structural Journal87(2), pp.220-231.
[13] Mangat, P.S. and Elgarf, M.S., 1999. Flexural strength of concrete beams with corroding reinforcement. Structural Journal96(1), pp.149-158.
[14] Inci, P., Goksu, C., Ilki, A. and Kumbasar, N., 2012. Effects of reinforcement corrosion on the performance of RC frame buildings subjected to seismic actions. Journal of Performance of Constructed Facilities27(6), pp.683-696.
 [15] Maalej, M., Ahmed, S.F. and Paramasivam, P., 2003. Corrosion durability and structural response of functionally-graded concrete beams. Journal of Advanced Concrete Technology1(3), pp.307-316.
[16] Ou, Y.C., Tsai, L.L. and Chen, H.H., 2012. Cyclic performance of large‐scale corroded reinforced concrete beams. Earthquake Engineering & Structural Dynamics41(4), pp.593-604.
[17] Chen, H.P. and Alani, A.M., 2012. Optimised repair strategy for cracking concrete structures caused by reinforcement corrosion. ACI Struct. J110(2), pp.229-238.
[18] Chen, H.P. and Xiao, N., 2015. Symptom-based reliability analyses and performance assessment of corroded reinforced concrete structures. Struct. Mech. Eng53(6), pp.1183-1200.
[19] Ramezanianpour, A.A. and Pourkhorshidi, A.R., 2004. Iranian code for durable concrete in Persian Gulf and Omman Sea. Building Engineering and Housing Science Journals2(4), p.3.
[20] Val, D.V. and Melchers, R.E., 1997. Reliability of deteriorating RC slab bridges. Journal of structural engineering123(12), pp.1638-1644.
[21] Kamde, D.R., Kondraivendhan, B. and Desai, S.N., 2015. Service Life Prediction Model for Reinforced Concrete Structures Due to Chloride Ingress. In Advances in Structural Engineering (pp. 1883-1894). Springer, New Delhi.
[22] Chen, H.P. and Nepal, J., 2015. Stochastic modelling and lifecycle performance assessment of bond strength of corroded reinforcement in concrete. Structural Engineering and Mechanics54(2), pp.319-336.
[23] BaniAsad, E. and Dehestani, M., 2019, August. Incorporation of corrosion and bond-slip effects in properties of reinforcing element embedded in concrete beams. In Structures (Vol. 20, pp. 105-115). Elsevier.
[24] Chen, H.P., 2018. Residual Flexural Capacity and Performance Assessment of Corroded Reinforced Concrete Beams. Journal of Structural Engineering, 144(12), p.04018213.
[25] Zhang, R., Castel, A. and François, R., 2010. Concrete cover cracking with reinforcement corrosion of RC beam during chloride-induced corrosion process. Cement and Concrete Research40(3), pp.415-425.
[26] Brownjohn, J.M.W., Moyo, P., Omenzetter, P. and Chakraborty, S., 2005. Lessons from monitoring the performance of highway bridges. Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures12(3‐4), pp.227-244.
[27] Dhillon, B.S., 2005. Reliability evaluation methods. Reliability, Quality, and Safety for Engineers, pp.87-105.
[28] Mohammadi Farsani, A. and Keshtegar, B., 2015. Reliability analysis of corroded reinforced concrete beams using enhanced HL-RF method. Civil Engineering Infrastructures Journal, 48(2), pp.297-304.
[29] van Noortwijk, J.M., 2009. A survey of the application of gamma processes in maintenance. Reliability Engineering & System Safety94(1), pp.2-21.
[30] van Noortwijk, J.M. and Frangopol, D.M., 2004. Two probabilistic life-cycle maintenance models for deteriorating civil infrastructures. Probabilistic Engineering Mechanics19(4), pp.345-359.
[31] Mostofinejad, Davood. (2009). Reinforced Concrete Structures. 13th Ed. (Only include the edition if it is not the first edition) Esfahan: Isfahan University of Technology, Page (178).