بررسی آزمایشگاهی مقاوم‌سازی خمشی تیرهای سراسری بتن‌آرمه با لمینیت پیش‌ساخته کامپوزیت الیافی توانمند

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده عمران، دانشگاه سمنان، سمنان، ایران

2 استاد، دانشکده عمران، دانشگاه سمنان، سمنان، ایران

3 دانشیار، دانشکده عمران، دانشگاه سمنان، سمنان، ایران

چکیده

هدف از این مطالعه آزمایشگاهی، بررسی تاثیر استفاده از لمینیت پیش‌ساخته کامپوزیت الیافی توانمند در مقاوم‌سازی تیرهای سراسری، بر ظرفیت باربری، شکل‌پذیری و ظرفیت استهلاک انرژی این تیرها است. همچنین تاثیر کاشت میلگرد در لمینیت پیش‌ساخته بر بهبود رفتار خمشی این تیرها بررسی شده است. کامپوزیت الیافی توانمند، یک کامپوزیت پایه‌سیمانی با مشخصات مکانیکی قابل توجه و دوام بالا است. به منظور بررسی تاثیر لمینیت‌های کامپوزیتی الیافی بر رفتار خمشی تیرها، هشت نمونه تیر بتن‌آرمه دو دهانه در دو گروه چهارتایی با مقادیر مختلف آرماتور فشاری ساخته و در هر گروه یک نمونه به عنوان نمونه مرجع، بدون مقاوم‌سازی بارگذاری شد. یکی از نمونه‌های هر گروه با لمینیت کامپوزیتی در ناحیه کششی وسط دهانه‌ها و تکیه‌گاه میانی و دو نمونه دیگر با لمینیت حاوی آرماتور طولی در همان نواحی مقاوم‌سازی شدند. آزمایشات نشان داد که ظرفیت باربری نمونه‌های مقاوم‌سازی شده بین 33 تا 59 درصد، ظرفیت استهلاک انرژی آنها بین 16 تا 35 درصد و سختی اولیه آنها تا دو برابر نمونه‌های مرجع افزایش یافت. شکل‌پذیری نمونه‌های مقاوم‌سازی شده با لمینیت فاقد آرماتور، 23 درصد نسبت به نمونه‌های مرجع کاهش یافت. اما وجود آرماتور در لمینیت باعث افزایش 5 تا 10 درصدی شکل‌پذیری نسبت به نمونه های مقاوم‌سازی شده با لمینیت فاقد آرماتورشد. نتایج این بررسی، موئد مفید بودن استفاده از لمینیت‌های پیش‌ساخته کامپوزیتی در بهبود رفتار خمشی تیرهای سراسری بتن‌آرمه است. همچنین کاشت میلگرد در لمینیت، علاوه بر افزایش ظرفیت باربری، مانع از کاهش قابل توجه شکل‌پذیری نمونه مقاوم سازی شده می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Flexural Strengthening of Continuous RC Beams Using HPFRCC Precast Laminates

نویسندگان [English]

  • Alireza Bitaraf 1
  • Ali Kheyroddin 2
  • Mohammad Kazem Sharbatdar 3
1 Ph.D. Candidate, Faculty of Civil Engineering, Semnan University, Semnan, Iran
2 Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
3 Associate Professor, Civil Engineering Faculty, Semnan University, Semnan, Iran
چکیده [English]

In this study, the use of precast laminates, made of high-performance fiber-reinforced cementitious composite (HPFRCC), was investigated for strengthening of continuous reinforced concrete (RC) beams. HPFRCCs are characterized by their high tensile strength and remarkable durability properties. To find the effect of strengthening, eight continuous (two-bay) RC beams were tested under monotonic load in the middle of spans; two of which were the control specimens and six of which were strengthened specimens. The HPFRCC laminates were prefabricated with 25 mm thickness and bonded to the tensile surface of beams using epoxy and mechanical anchorage. The longitudinal bars were added to laminates in four specimens to survey their effect on strengthened beams. Comparison of results declared that the load carrying capacity was increased up to 59 % in strengthened beams.  Ductility index of the strengthened beams was acceptable, and also up to 35 % growth in energy-absorption capacity was observed. Applying laminates to the tensile surface delayed crack propagation and decreased the midspan deflection. Also, stiffness of specimens in the cracked concrete stage was increased up to 78 % that led to decrease the service deflection. It is concluded that the use of HPFRCC laminates, especially in case of applying longitudinal bars, is an efficient method to enhance the flexural capacity of continuous RC beams.

کلیدواژه‌ها [English]

  • HPFRCC
  • RC continuous beam
  • Strengthening
  • Load-bearing capacity
  • Ductility
  • Energy-absorption
  • Precast laminate
[1] Qin, Z. and  Tian, Y. and  Li, G. and Liu, L. (2019). Study on bending behaviors of severely pre-cracked RC beams strengthened by BFRP sheets and steel plates. Construction and Building Materials, 219, 131-143.
[2] Li, L. Z. and  Wu, Z. L. and  Yu, J. T. and  Wang, X. and  Zhang, J. X. and Lu, Z. D. (2018). Numerical simulation of the shear capacity of bolted side-plated RC beams. Engineering Structures, 171, 373-384.
[3] Kheyroddin, A. and  Sharbatdar, M. K. and Ashary, A. (2017). Experimental Evaluation of RC Damaged Frames Rehabilitated at Critical Zones with CFRP Composite layers. Journal of Structural and Construction Engineering, -.
[4] Mazloom, M. and  Mehrvnd, M. and Savari Pour, A. (2018). Strengthening of Concrete Beams Using Glass Fiber Reinforced Polymers. Journal of Structural and Construction Engineering, -.
[5] Zhang, X. and  Luo, Y. and  Wang, L. and  Zhang, J. and  Wu, W. and Yang, C. (2018). Flexural strengthening of damaged RC T-beams using self-compacting concrete jacketing under different sustaining load. Construction and Building Materials, 172, 185-195.
[6] Alhadid, M. M. A. and Youssef, M. A. (2018). Assessment of the flexural behavior of reinforced concrete beams strengthened with concrete jackets. Engineering Structures, 167, 108-120.
[7] Alaee, F. J. and Karihaloo, B. L. (2003). Retrofitting of reinforced concrete beams with CARDIFRC. Journal of Composites for Construction, 7(3), 174-186.
[8] Tanarslan, H. M. (2017). Flexural strengthening of RC beams with prefabricated ultra high performance fibre reinforced concrete laminates. Engineering Structures, 151, 337-348.
[9] Naaman, A. and Reinhardt, H. (2006). Proposed classification of HPFRC composites based on their tensile response. Materials and structures, 39(5), 547-555.
[10] Eldin, H. K. S. and  Mohamed, H. A. and  Khater, M. and Ahmed, S. (2014). Mechanical Properties of Ultra-High Performance Fiber Reinforced Concrete. International Journal of Engineering and Innovative Technology 4(4), 4-10.
[11] Yoo, D.-Y. and Banthia, N. (2016). Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review. Cement and Concrete Composites, 73, 267-280.
[12] Wille, K. and Naaman, A. (2010). Fracture energy of UHPFRC under direct tensile loading. In: FraMCoS-7 International Conference. Seoul: Korea Concrete institute, 65-72.
[13] Wille, K. and  Naaman, A. E. and Parra-Montesinos, G. J. (2011). Ultra-High Performance Concrete with Compressive Strength Exceeding 150 MPa (22 ksi): A Simpler Way. ACI Materials Journal, 108(1), 46-54.
[14] Pyo, S. and  El-Tawil, S. and Naaman, A. E. (2016). Direct tensile behavior of ultra high performance fiber reinforced concrete (UHP-FRC) at high strain rates. Cement and Concrete Research, 88, 144-156.
[15] Jiang, G. and  Rong, Z. and Sun, W. (2015). Effects of metakaolin on mechanical properties, pore structure and hydration heat of mortars at 0.17 w/b ratio. Construction and Building Materials, 93, 564-572.
[16] Alvarez, G. L. and  Nazari, A. and  Bagheri, A. and  Sanjayan, J. G. and De Lange, C. (2017). Microstructure, electrical and mechanical properties of steel fibres reinforced cement mortars with partial metakaolin and limestone addition. Construction and Building Materials, 135, 8-20.
[17] Martinola, G. and  Meda, A. and  Plizzari, G. A. and Rinaldi, Z. (2010). Strengthening and repair of RC beams with fiber reinforced concrete. Cement and Concrete Composites, 32(9), 731-739.
[18] Ruano, G. and  Isla, F. and  Pedraza, R. I. and  Sfer, D. and Luccioni, B. (2014). Shear retrofitting of reinforced concrete beams with steel fiber reinforced concrete. Construction and Building Materials, 54, 646-658.
[19] Holschemacher, K. and  Iqbal, S. and  Ali, A. and Bier, T. A. (2017). Strengthening of RC Beams Using Lightweight Self-compacting Cementitious Composite. Procedia Engineering, 172, 369-376.
[20] Aldahdooh, M. A. A. and  Muhamad Bunnori, N. and  Megat Johari, M. A. and  Jamrah, A. and Alnuaimi, A. (2016). Retrofitting of damaged reinforced concrete beams with a new green cementitious composites material. Composite Structures, 142, 27-34.
[21] Shafiq, N. and  Ayub, T. and Khan, S. U. (2016). Investigating the performance of PVA and basalt fibre reinforced beams subjected to flexural action. Composite Structures, 153, 30-41.
[22] Safdar, M. and  Matsumoto, T. and Kakuma, K. (2016). Flexural behavior of reinforced concrete beams repaired with ultra-high performance fiber reinforced concrete (UHPFRC). Composite Structures, 157, 448-460.
[23] Tanarslan, H. M. and  Alver, N. and  Jahangiri, R. and  Yalçınkaya, Ç. and Yazıcı, H. (2017). Flexural strengthening of RC beams using UHPFRC laminates: Bonding techniques and rebar addition. Construction and Building Materials, 155, 45-55.
[24] Khalil, A. E.-H. and  Etman, E. and  Atta, A. and Essam, M. (2017). Behavior of RC beams strengthened with strain hardening cementitious composites (SHCC) subjected to monotonic and repeated loads. Engineering Structures, 140, 151-163.
[25] Farhat, F. and  Nicolaides, D. and  Kanellopoulos, A. and Karihaloo, B. L. (2007). High performance fibre-reinforced cementitious composite (CARDIFRC)–Performance and application to retrofitting. Engineering fracture mechanics, 74(1), 151-167.
[26] Maringoni, S. and  Meda, A. and  Mostosi, S. and Riva, P. (2012). Strengthening of RC members by means of high performance concrete. Special Publication, 289, 1-13.
[27] Naaman, A. and  Paramasivam, P. and  Balazs, J. and  Eibl, J. and  Erdelyi, L. and  Hassoun, N. and  Krstulovic-Opara, N. and  Li, V. C. and Lohrman, G. (1996). Reinforced and prestressed concrete using HPFRCC matrices.
[28] Akbarzadeh, H. and Maghsoudi, A. A. (2010). Experimental and analytical investigation of reinforced high strength concrete continuous beams strengthened with fiber reinforced polymer. Materials & Design, 31(3), 1130-1147.
[29] Bengar, H. A. and Maghsoudi, A. (2010). Experimental investigations and verification of debonding strain of RHSC continuous beams strengthened in flexure with externally bonded FRPs. Materials and structures, 43(6), 815-837.
[30] Rahman, M. M. and Rahman, M. W. (2013). Simplified method of strengthening RC continuous T beam in the hogging zone using carbon fiber reinforced polymer laminate A numerical investigation. Journal of Civil Engineering and Construction Technology, 4(6), 174-183.
[31] Samaaneh, M. A. and  Sharif, A. M. and  Baluch, M. H. and Azad, A. K. (2016). Numerical investigation of continuous composite girders strengthened with CFRP. Steel Composite Struct, 21, 1307-1325.
[32] Hamed, A. A. A. and  El-Kashif, K. F. O. and Salem, H. M. (2019). Flexural strengthening of preloaded reinforced concrete continuous beams: An experimental investigation. Alexandria Engineering Journal, 58(1), 207-216.
[33] Mostofinejad, D. and Farahbod, F. (2005). Parametric Study on Moment Redistribution in Continuous Beams in Concrete Bridges and a Comparison Between Iranian Concrete Code and ACI 318-02. Journal of Transportation Research, 2(2), 109-118.
[34] Farahbod, F. (2010). Finite Element Analysis For Estimating The Moment Capacity And Moment Redistribution of Continuous RC Frames Strengthened with CFRP Sheets. Concrete Research, 3(1), 33-41.
[35] ehsani, r. and  Sharbatdar, M. K. and Kheyroddin, A. Experimental Investigation on Flexural Behaviour and Ductility of Two-Span RC Beams Cast with High Performance Composites HPFRCC. Journal, [online] available at: www.jsce.ir/article_79878.html [date accessed].
[36] Atiş, C. and  Özcan, F. and  Kılıc, A. and  Karahan, O. and  Bilim, C. and Severcan, M. (2005). Influence of dry and wet curing conditions on compressive strength of silica fume concrete. Building and environment, 40(12), 1678-1683.
[37] Banthia, N. and Yan, C. (1996). Bond-slip characteristics of steel fibers in high reactivity metakaolin (HRM) modified cement-based matrices. Cement and Concrete Research, 26(5), 657-662.
[38] Wang, J.-Y. and  Banthia, N. and Zhang, M.-H. (2012). Effect of shrinkage reducing admixture on flexural behaviors of fiber reinforced cementitious composites. Cement and Concrete Composites, 34(4), 443-450.
[39] Soulioti, D. V. and  Barkoula, N. M. and  Koutsianopoulos, F. and  Charalambakis, N. and Matikas, T. E. (2013). The effect of fibre chemical treatment on the steel fibre/cementitious matrix interface. Construction and Building Materials, 40, 77-83.
[40] Müller, U. and  Meng, B. and  Kühne, H.-C. and  Nemecek, J. and  Fontana, P. and Fehling, E., editors. Micro texture and mechanical properties of heat treated and autoclaved Ultra High Performance Concrete (UHPC). 2nd International Symposium on Ultra High Performance Concrete; 2008.
[41] Zingg, A. and  Winnefeld, F. and  Holzer, L. and  Pakusch, J. and  Becker, S. and  Figi, R. and Gauckler, L. (2009). Interaction of polycarboxylate-based superplasticizers with cements containing different C3A amounts. Cement and Concrete Composites, 31(3), 153-162.
[42] Brandt, A. M. (2008). Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Composite structures, 86(1), 3-9.
[43] Wille, K. and  El-Tawil, S. and Naaman, A. (2014). Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading. Cement and Concrete Composites, 48, 53-66.
[44] BSI. (2014). BS 8500-2: Concrete–complementary British standard to BS EN 206-1. 2nd ed.  London: British standards institution.
[45] Paulay, T. and Priestley, M. N. (1992). Seismic design of reinforced concrete and masonry buildings.
[46] Maghsoudi, A. and Bengar, H. A. (2009). Moment redistribution and ductility of RHSC continuous beams strengthened with CFRP. Turkish Journal of Engineering and Environmental Sciences, 33(1), 45-59.
[47] Maghsoudi, A. and Bengar, H. A. (2011). Acceptable lower bound of the ductility index and serviceability state of RC continuous beams strengthened with CFRP sheets. Scientia Iranica, 18(1), 36-44.
[48] Xu, Q. and  Chen, L. and  Han, C. and  Harries, K. A. and Xu, Z. (2019). Experimental research on fire-damaged RC continuous T-beams subsequently strengthened with CFRP sheets. Engineering Structures, 183, 135-149.
[49] Kheyroddin, A. and Naderpour, H. (2007). Plastic hinge rotation capacity of reinforced concrete beams. International Journal of Civil Engineering (IJCE), 5(1), 30-47.
[50] Sharifi, Y. and Maghsoudi, A. (2013). Ductility Performance of Heavily Steel Reinforced Concrete Flexural Members with High Strength Concrete. Amirkabir Journal of Civil Engineering, 44(2), 37-46.