اثر اندرکنش دیوار و قاب در سیستم های دیوار برشی فولادی کنگره ای

نوع مقاله : علمی - پژوهشی

نویسندگان

1 فارغ التحصیل کارشناسی ارشد، دانشگاه یاسوج، یاسوج، ایران

2 استادیار، دانشگاه یاسوج، یاسوج، ایران

چکیده

سیستم دیوار برشی فولادی با ورق کنگره ای یک سیستم باربر جانبی می باشد که محققان در سال های اخیر تحقیقاتی را درباره ی آن انجام داده اند. در این مطالعه، رفتار این سیستم تحت بارگذاری پوش آور بررسی شد. برای این منظور 20 نمونه دیوار برشی فولادی با ورق کنگره ای، با نسبت دهانه به ارتفاع های 5/2، 2، 4/1، 85/0 و با تعداد طبقات 10، 6، 4، 2، 1 طراحی و سپس با نرم افزار اجزاء محدود آباکوس تحلیل‌ شد. نتایج این مطالعه نشان می دهد که سختی اولیه این نوع از دیوار برشی ها بالا می باشد و مقاومت آن ها در دریفت حدود 1/0 درصد به بیشترین مقدار خود می رسد؛ اما پس از کمانش اندرکنشی در ورق، افت قابل‌توجهی در سختی و مقاومت دیوار برشی دیده می شود. همچنین نتایج این مطالعه نشان می دهد که تا قبل از کمانش ورق، درصد بیشتری از نیروی برشی، توسط ورق تحمل می‌شود؛ اما پس از کمانش ورق، قاب درصد بیشتری از برش را تحمل می کند. در این مطالعه، نحوه ی ایجاد میدان کششی در این نوع از سیستم ها بررسی شد و رابطه ای برای تعیین زاویه ی میدان کششی ارائه‌ گردید. طبق این رابطه، زاویه ی میدان کششی فقط به پارامتر نسبت دهانه به ارتفاع دیوار وابسته است. در انتها، در این مطالعه روشی برای تخمین نمودار پوش آور سیستم دیوار برشی با ورق کنگره ای یک طبقه و چند طبقه ارائه شده است. این روش بر اساس اندرکنش بین قاب و ورق کنگره ای بدست آمد و با نتایج نمونه های آزمایشگاهی و عددی مورد تائید قرار گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

The Wall–Frame Interaction Effect in Corrugated Steel Shear Walls Systems

نویسندگان [English]

  • Ehsan Vaziri 1
  • Mohammad Gholami 2
1 Master Graduate, Yasouj University, Yasouj, Iran
2 Assistant Professor, Yasouj University, Yasouj, Iran
چکیده [English]

Steel shear wall with corrugated plate is a lateral load resistant system. In recent years, researchers have made investigations in this Field. In this study, the behavior of this system under pushover loading has been evaluated. For this purpose, 20 samples of steel shear wall system with corrugated plate with bay to height ratio of 0.85,1.4,2,2.5 And in 1,2,4,6,10 Stories has been designed. Then these samples with finite element software (Abaqus) were analyzed. Results of this study show that the initial stiffness of this type of shear walls is high And it's resistance in drift about 0.1 percent reaches to the highest amount. But when the plate is subjected to interaction buckling it's stiffness and resistance has been decreased significantly. Also, Results of this study shows that before the plate reaches to buckling limit; a greater percentage of shear force is resisted by plate but after plate's buckling frame has more contribution in resisting shear force. In this study mechanism of creation of tension Field in this type of systems has been evaluated and relation for determination of tension Field's angle was proposed. In the end, in this study, a method for estimating pushover diagram of shear wall system with corrugated plate for one and several story structures has been presented. This solution was founded on the interaction between frame and corrugated Plate and by results of experimental and numerical samples was verified.

کلیدواژه‌ها [English]

  • Corrugated plate pushover diagram
  • high structures
  • Interaction between frame and corrugated Plate
  • tension Field
  1. Ziemian RD, editor. Guide to stability design criteria for metal structures. NewYork: John Wiley and Sons, Inc.; 2010.
  2. Thorburn LJ, Kulak GL, Montgomery CJ. Analysis of steel plate shear walls. Struct Engrg Rep. no.107. University of Alberta, Edmonton, Canada: Department of Civil Engineering; 1983.
  3. Tromposch EW, Kulak GL. Cyclic and static behaviour of thin panel steel plate shear walls. Struct Engrg Rep. no.145. University of Alberta, Edmonton, Canada: Department of Civil Engineering; 1987.
  4. Sabouri-Ghomi S, Roberts TM. Nonlinear dynamic analysis of steel plate shear walls including shear and bending deformations. Eng Struct 1992;14 (5):309–17.
  5. Elgaaly M, Caccese V, Du C. Postbuckling behavior of steel–plate shear walls under cyclic loads. J Struct Eng ASCE 1993;119(2):588–605.
  6. Rezai M. Seismic behaviour of steel plate shear walls by shake table testing. [PhD dissertation] Vancouver, BC: Dept. of Civil Eng, University of British Columbia; 1999.
  7. Astaneh-Asl A. Steel tips, seismic behavior and design of steel shear walls. Tech. report. Moraga (CA, USA): Structural Steel Educational Council; 2001.
  8. Clayton PM, Berman JW, Lowes LN. Subassembly testing and modeling of self centering steel plate shear walls. Eng Struct 2013;56:1848–57.
  9. Nakashima M, Iwai S, Iwata M, Takeuchi T, Konomi S, Akazawa T, et al. Energy dissipation behaviour of shear panels made of low yield steel. J Earthq Eng Struct Dyn 1994;23:1299–313.
  10. Nakashima M. Strain-hardening behaviour of shear panel made of low yield steel. I: Test. J Struct Eng-AISC 1995:1742–9.
  11. Hitaka T, Matsui C. Experimental study on steel shear walls with slits. J Struct EngASCE 2003;129(5):586–95.
  12. Berman JW. Seismic behavior of code designed steel plate shear walls. Eng Struct 2011;33(1):230–44.
  13. Alavi E, Nateghi F. Experimental study of diagonally stiffened steel plate shear walls. J Struct Eng 2013;139(11):1795–811.
  14. Berman JW, Bruneau M. Experimental investigation of light-gauge steel plate shear walls. J Struct Eng-AISC 2005;131(2):259–67.
  15. Sabouri-Ghomi, S. and Asad Sajjadi, R. (2012), “Experimental and theoretical studies of steel shear walls with and without stiffeners”, J. Construct. Steel Res., 75, 152-159.
  16. Sabouri-Ghomi, S. and Mamazizi, S. (2015), “Experimental investigation on stiffened steel plate shear walls with two rectangular openings”, Thin-Wall. Struct., 86, 56-66.
  17. Loughlan, J. and Hussain, N. (2014), “The in-plane shear failure of transversely stiffened thin plates”, ThinWall. Struct., 81, 225-235.
  18. De Matteis, G., Mazzolani, F.M. and Panico, S. (2008), “Experimental tests on pure aluminium shear panels with welded stiffeners”, Eng. Struct., 30(6), 1734-1744. [18].
  19. Brando, G. and De Matteis, G. (2014), “Design of low strength-high hardening metal multi-stiffened shear”, Struct., 60, 2-10.
  20. Alinia, M. and Sarraf Shirazi, R. (2009), “On the design of stiffeners in steel plate shear walls”, J. Construct. Steel Res., 65(10), 2069-2077.
  21. Takahashi Y, Takemoto Y, Takeda T, Takagi M. Experimental study on thin steel shear walls and particular bracings under alternative horizontal load. Preliminary rep. IABSE symp. on resistance and ultimate deformability of struct. Acted on by well-defined reported loads. International Association for Bridge and Structural Engineering, Lisbon, Portugal; 1973, pp. 185–191.
  22. Ibrahim SA, El-Dakhakhni VW, Elgaaly M. Behavior of bridge girders with corrugated webs under monotonic and cyclic loading. Eng Struct 2006;28(14):1941–55
  23. Emami, F., Mofid, M., and Vafai, A. (2013). “Experimental Study on Cyclic Behavior of Trapezoidally Corrugated Steel Shear Walls”, Engineering Structures, 48(March), pp. 750-762.
  24. Kalali, H., Hajsadeghi, M., Zirakian, T., and Alaee, F. J. (2015). “Hysteretic performance of SPSWs with trapezoidally horizontal corrugated web-plates”, Steel Composite Structures, An International Journal, pp. 277-292.
  25. Hosseinpour, E., Baharom, S., and Yadollahi, Y. (2015). “Evaluation of Steel Shear Walls Behavior with Sinusoidal and Trapezoidal Corrugated Plates”, Advances in Civil Engineering, Vol. 2015, Article ID 715163.
  26. Edalati, S. A., Yadollahi, Y., Pakar, I., Emadi, A., and Bayat, M. (2014). “Numerical Study on the Performance of Corrugated Steel Shear Walls”, Wind and Structures, 19(4), pp. 405-420.
  27. Bhowmick, A. K., Grondin, G. Y., and Driver, R. G. (2014). “Nonlinear Seismic Analysis of Perforated Steel Plate Shear Walls”, Journal of Constructional Steel Research, 94(March), pp. 103-113.
  28. Farzampour, A., & Laman, J. A. (2015). " Behavior prediction of corrugated steel plate shear walls with openings." Journal of Constructional Steel Research, 114, 258-268.
  29. ASCE, SEI/ASCE 7-05. Minimum design loads for buildings and other structures. Virginia (USA): American Society of Civil Engineers; 2005.
  30. Steel design guide 20, steel plate shear walls. Chicago (IL): American Institute of Steel Construction; 2007.
  31. Qu B, Bruneau M, Lin CH, Tsai KC. Testing of full-scale two-story steel plate shear wall with reduced beam section connections and composite floors. J Struct EngASCE 2008;134(3):364–72.
  32. Habashi HR, Alinia MM. Characteristics of the wall–frame interaction in steel plate shear walls. J Constr Steel Res 2010;66:150–8.
  33. Eurocode (2003). Design of Steel Structures. Part 1.5:Plated Structural elements. European Committee for Standardization, Brussels.
  34. Driver RG, Kulak GL, Kennedy DJL, Elwi AE. Cyclic test of four-story steel plate shear wall. J Struct Eng-ASCE 1998;124(2):112–30.
  35. Hosseinzadeh SAA, Tehranizadeh M. Behavioral characteristics of code designed steel plate shear wall systems. J Constr Steel Res 2014;77:72–84.
  36. Choi I-R, Park H-G. Steel plate shear walls with various infill plate designs. J Struct Eng 2009;135:785–96.
  37. ANSI/AISC 341–10. Seismic provisions for structural steel buildings. Chicago (IL): AISC; 2010.
  38. Athanasios I, Dimopoulos, Nikitas.B, Dimitri.E, Beskos, (2002). " Seismic yield displacements of plane moment resisting and x-braced steel frames ." Soil Dynamics and Earthquake Engineering , Vol.41, pp.128–140.
  39. Jing-Zhong, T. Yan-Lin , G. (2018). " Shear resistance of stiffened steel corrugated shear walls",  Thin-Walled Structures , Vol.127 pp.76–89.           
  40. Hassanein, M.F. (2011). " Finite element investigation of shear failure of lean duplex stainless steel plate girders ", Thin-Walled Structures , Vol.49 pp.964–973.
  41. Yi , J . Gil , H. Youm, k. Lee, H. (2008). "Interactive shear buckling behavior of trapezoidally corrugated steel webs." Engineering Structures., Vol.30, pp.1659–1666.
  42. Zhu, L.Nie,J.Tao,M. Tang,L. (2013). "Shear strength of trapezoidal corrugated steel webs." Journal of Constructional Steel Research, Vol.85, pp.105-115.