عیب‌یابی صفحات فولادی مبتنی بر مقایسه نتایج تحلیلی تبدیل موجک گسسته دو بعدی شکل مودهای اولیه و ثانویه

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

2 دانشیار، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

چکیده

همواره وقوع خرابی در سازه‌ها امری اجتناب ناپذیر می‌باشد. تاکنون نمونه‌های بسیاری از انواع خرابی‌ها در سازه‌های مهندسی با تلفات جانی و مالی فراوانی به ثبت رسیده است. از این‌رو، شناسایی عیوب سازه در طول بهره‌برداری از آن به منظور تأمین ایمنی با کمترین هزینه موضوع بسیاری از تحقیقات دو دهه اخیر بوده است. در این راستا، تبدیل موجک که یک ابزار ریاضی توانمند پردازش سیگنال‌ها می‌باشد، در حوزه پایش سلامت سازه‌ها نظر بسیاری از پژوهشگران را به خود جلب نموده است. در این مقاله با توجه به گسترش روز افزون دیوار برشی فولادی در صنعت ساختمان‌سازی، مسئله شناسایی محل خرابی در صفحات فولادی مورد توجه واقع گردید. در ابتدا صفحه فولادی با شرایط تکیه‌گاهی آزاد در نرم افزار المان محدود ABAQUS مدل‌سازی و تحلیل فرکانسی شد، سپس هشت شکل مود اول حالت‌های سالم و آسیب‌دیده استخراج گردید. شکل مودهای اولیه و ثانویه به ‌عنوان یک سیگنال فضایی دو بعدی توسط تبدیل موجک گسسته دو بعدی مورد تحلیل واقع شدند. نتایج حاصل از جزئیات قطری تحلیل موجک شکل مودهای ثانویه در مقایسه با شکل مودهای اولیه، اغتشاش بیشتری از ضرایب موجک را در محل وقوع خرابی‌ها نشان می‌دهد، به طوری که با تحلیل موجک شکل مودهای مود اول نسبت به شکل مودهای بالاتر، محل خرابی‌ها با هم‌سطحی مناسب‌تری از ضرایب موجک با خطای کمتر از %6 آشکار می‌گردد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Damage Detection in Steel Plates Based on Comparing Analytical Results of the Discrete 2-D Wavelet Transform of Primary and Secondary Modes Shape

نویسندگان [English]

  • Mohtasham Khanahmadi 1
  • Omid Rezayfar 2
  • Majid Gholhaki 2
1 Master of Science, Department of Civil Engineering, Semnan University, Semnan, Iran
2 Associate Proffessor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
چکیده [English]

Damage occurrence is always inevitable in structures. So far, many examples of damage types in engineering structures have been recorded with many losses of human and financial. For this reason, the detecting of structural damages during its exploitation to provide safety with the lowest cost has been the subject of many researchers in the last two decades. In this regard, the wavelet transform is a powerful mathematical tool for signal processing, has attracted the attention of many researchers in the field of health monitoring of structures. In this paper, due to the increase of steel plate shear wall in the building industry, it was considered the problem of detecting the location of the damage in steel plates. In this paper, due to the increase of steel plate shear wall in the building industry, it was considered the problem of detecting the location of the damage in steel plates. At first, the steel plate was modeled in ABAQUS finite element software with free support conditions, and then the healthy and damaged first eight mode shape was extracted. The primary and secondary modes shape was analyzed using discrete two-dimensional wavelet transform as a two-dimensional spatial signal. The results of the diagonal details of the wavelet analysis of secondary modes shape show the turbulence of the wavelet coefficients, compared with primary modes shape in damage locations; so that, wavelet analysis of the modes shape of the first mode, show damage location with the better equivalence of wavelet coefficients and the error of less than 6%.

کلیدواژه‌ها [English]

  • wavelet transform
  • Signal processing
  • structural health monitoring
  • Steel Plate
  • Mode shape
  • Damage detection
[1] Rytter, A., (1993). “Vibration based inspection of civil engineering structures”. Ph.D. Dissertation, Department of Building Technology and Structural Engineering, Aalborg University, Denmark.
[2] Newland, D. E., (1994). “Wavelet analysis of vibration”. Theory Journal of Vibration and Acoustics, Vol.116, p. 409-416.
[3] Masuda, A., Nakaoka, A., Sone, A., and Yamamoto, S., (1995). “Health monitoring system of structures based on orthonormal wavelet transform”. Seismic Eng., Vol. 312, p. 161-167.
[4] Wang, Q., Deng, X., (1999). “Damage detection with spatial wavelets”. International Journal of Solids and Structures, Vol. 36, 3443-3468.
[5] Fan, W., Qiao, P., (2009). “A 2-d continuous wavelet transform of mode shape data for damage detection of plate structures”. International Journal of Solids and Structures, Vol. 46, 4379-4395.
[6] Katunin, A., (2010). “Identification of multiple cracks in composite beams using discrete wavelet transform”. Scientific Problem of Machines Operation and Maintenance, 2(162).
[7] Ghodrati Amiri, G., Bagheri, A., Seyed Razzaghi, S. A., Asadi, A., (2010). “Structural damage detection in plate using wavelet transform”. Challeges, Opportunities and Solution in Structural Engineering and Construction-Ghafoori (Ed).
[8] Liu, X., Leimbach, K. R., Hartmann, D., and Hoffer, R., (2012). “Signal analysis using wavelets for structural damage detection applied to wind energy converters”, 14th International Conference on Computing in Civil and Building Engineering.
[9] Xu, B., Li, B., Song, G., (2012). “Active debonding detection for large rectangular CFSTs based on wavelet packet energy spectrum with piezoceramics”, Journal of Structural Engineering, Vol. 139, No. 9, pp-1435-1443.
[10] Solís, M., Algaba, M., and Galvín, P., (2013). “Continuous wavelet analysis of mode shapes differences for damage detection”, Mechanical Systems and Signal Processing, Vol. 40, pp. 645-666.
[11] Bagheri, A., Kourehli, S., (2013). “Damage detection of structures under earthquake excitation using discrete wavelet analysis”. Asian Journal of Civil Engineering (BHRC), vol. 14, No. 2, pp. 289-304.
[12] Katunin, A., (2015). “Stone impact damage identification in composite plates using modal data and quincunx wavelet analysis”, Archives of Civil and Mechanical Engineering, 15, 251-261.
[13] Patel, S., Chourasia, A., Panigrahi, S., Parashar, J., Parvez, N., and Kumar, M., (2016). “Damage identification of RC structures using wavelet transformation”, Procedia Engineering, Vol. 144, pp. 336-342.
[14] Yang, C., Oyadiji, S. O., (2017). “Delamination detection in composite laminate plates using 2d wavelet analysis of modal frequency surface”, Journal of Computers and Structures, 179, 109-126.
[15] Wang, S., Li, J., Luo, H., Zhu, H., (2019). “Damage identification in underground tunnel structures with wavelet based residual force vector”, Journal of Engineering Structures, 178. 506-520.
[16] Rao, K.R., Kim, D.E., Hwang, J.J., (2005). “Fast fourier transform: Algorithm and applications”, Springer, Berlin Heidelberg.
[17] Mallat, S., (1989). “A theory for multi resolution signal decomposition: The wavelet representation”, IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 11, p. 674-693.
[18] Pastor, M., Binda, M., Harcarik, T., (2012). “Modal Assurance Criterion”, Journal of Procedia Engineering, 48, 543-548.