تعیین ضریب رفتار دیوار برشی فولادی در قاب بتن‌آرمه با استفاده از روش طرح پلاستیک

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری سازه، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

2 دانشیار، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

چکیده

در چند دهه اخیر، ایده استفاده از دیوار برشی فولادی نازک، به‌ عنوان یک سیستم مقاوم در برابر بارهای جانبی در طراحی و تقویت ساختمان ها، مورد توجه پژوهشگران و طراحان قرار گرفته است. در این تحقیق تلاش شده است ضریب رفتار (R)، ضریب اضافه مقاومت و ضریب تشدید کننده جابجایی در قاب خمشی بتن آرمه ویژه با دیوار برشی فولادی نازک و استفاده از روش طرح پلاستیک مبتنی بر عملکرد، مورد بررسی قرار گیرد. بدین منظور قاب هایی با سیستم دیوار برشی فولادی با تعداد طبقات مختلف، در نظر گرفته‌ شده‌اند و آنالیز استاتیکی غیرخطی، روی این قاب ها با استفاده از مدل نواری در نرم‌افزار OpenSees انجام‌ شده است. نتایج شبیه‌سازی با نتایج آزمایش تجربی مقایسه گردیدند و تطبیق قابل قبولی مشاهده گردید. در نهایت مقادیر ضریب رفتار (R) ، ضریب اضافه مقاومت و ضریب تشدیدکننده جابجایی برای سیستم قاب خمشی بتن آرمه با دیوار برشی فولادی نازک بر اساس روش یوانگ محاسبه گردیده و به ترتیب برابر 9.37، 2.21 و 11.06 برای روش طراحی در حالت حدی پیشنهاد شده است. همچنین استفاده از دیوار برشی فولادی در قاب خمشی بتن آرمه نشان از افزایش مقاومت، شکل پذیری، سختی الاستیک و نهایتاً افزایش ضریب رفتار سازه را دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of response modification coefficient of Steel Plate Shear Walls in Reinforced Concrete Frame using performance-based plastic design method

نویسندگان [English]

  • Hamed Valizadeh 1
  • majid Gholhaki 2
1 Ph.D. Student of Structural Engineering. Semnan University, Semnan, Iran
2 Associate Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
چکیده [English]

In the last few decades, the idea of using thin steel plate shear wall, ( SPSW ) , has been noted as a lateral load resisting system in design and retrofit of buildings. In this research, it has been tried to determine, the appropriate response modification coefficient ( R ) , overstrength factor and the deflection amplification factor In the reinforced concrete Special moment frames, RC-SMF, with thin steel plate shear wall and using performance-based plastic design, PBPD. To do it, buildings with thin steel plate shear wall system and different story numbers are considered. Static pushover analysis are performed using strip model and OpenSees software. The simulation results were compared with experimental results and acceptable matching was observed. Finally response modification coefficient, overstrength factor and deflection amplification factor for reinforced concrete Special moment frames with thin steel plate shear wall system are calculated based on Uang's method and values of 9.37, 2.21 and 11.06, respectively, has been suggested for ultimate limit state design method. Also, the use of a thin steel plate shear wall in a RC-SMF shows an increase in strength, ductility, elastic hardness and, finally, an increase in the response modification coefficient ( R ) of the structure.

کلیدواژه‌ها [English]

  • Thin Steel Plate Shear Wall
  • Reinforced concrete frame
  • PBPD
  • Response Modification Coefficient
  • Overstrength factor
  • Deflection amplification factor
[1] Sabouri-Ghomi, S., Ventura, C. E., & Kharrazi, M. H. (2005). Shear analysis and design of ductile steel plate walls. Journal of Structural Engineering, 131(6), 878-889.
[2] Thorburn, L. J., Kulak, G. L., & Montgomery, C. J. (1983). Analysis and design of steel shear Wall system. Structural Engineering Rep. No. 107, Dept. of Civil Engineering, Univ. of Alberta, Alberta, Canada.
[3] Caccese, V., Elgaaly, M., & Chen, R. (1993). Experimental study of thin steel-plate shear walls under cyclic load. Journal of Structural Engineering, 119(2), 573-587.
[4] Elgaaly, M. (1998). Thin steel plate shear walls behavior and analysis. Thin-Walled Structures, 32(1), 151-180.
[5] Berman, J., & Bruneau, M. (2003). Plastic analysis and design of steel plate shear walls. Journal of Structural Engineering, 129(11), 1448-1456.
[6] Alinia, M. M., & Dastfan, M. (2006). Behaviour of thin steel plate shear walls regarding frame members. Journal of constructional steel research, 62(7), 730-738.
[7] Habashi, H. R., & Alinia, M. M. (2010). Characteristics of the wall–frame interaction in steel plate shear walls. Journal of Constructional Steel Research, 66(2), 150-158.
[8] Sabouri-Ghomi, S., & Sajjadi, S. R. A. (2012). Experimental and theoretical studies of steel shear walls with and without stiffeners. Journal of constructional steel research, 75, 152-159.
[9] Bhowmick, A. K., Grondin, G. Y., & Driver, R. G. (2014). Nonlinear seismic analysis of perforated steel plate shear walls. Journal of Constructional Steel Research, 94, 103-113.
[10] Purba, R., & Bruneau, M. (2015). Experimental investigation of steel plate shear walls with in-span plastification along horizontal boundary elements. Engineering Structures, 97, 68-79.
[11] Bahrebar, M., Kabir, M. Z., Zirakian, T., Hajsadeghi, M., & Lim, J. B. (2016). Structural performance assessment of trapezoidally-corrugated and centrally-perforated steel plate shear walls. Journal of Constructional Steel Research, 122, 584-594.
[12] Shekastehband, B., Azaraxsh, A. A., Showkati, H., & Pavir, A. (2017). Behavior of semi-supported steel shear walls: Experimental and numerical simulations. Engineering Structures, 135, 161-176.
[13] Ozcelik, Y., & Clayton, P. M. (2018). Seismic design and performance of SPSWs with beam-connected web plates. Journal of Constructional Steel Research, 142, 55-67.
[14] AISC, A. A. (2010). 341-10,“Seismic provisions for structural steel buildings”, Chicago (IL): American Institute of Steel Construction.
[15] CSA, C. (2001). CSA S16-01. Limit States Design of Steel Structures, Canadian Standards Association, Willowdale, Ontario, Canada.
[16] Leelataviwat, S., Goel, S.C. and Stojadinovic′, B. (1999). “Toward performance-based seismic design of structures”, Earthquake Spectra, Vol. 15, No. 3, pp. 435–461.
[17] Lee, S.S. and Goel, S.C. (2001). Performance-Based Design of Steel Moment Frames using Target Drift and Yield Mechanism, Research Report No. UMCEE 01–17, Dept. of Civil and Environmental Engineering, University of Michigan, Ann Arbor, USA.
[18] Dasgupta, P., Goel, S. C., Parra-Montesinos, G., & Tsai, T. C. (2004, August). Performance-based seismic design and behavior of a composite buckling restrained braced frame. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC (pp. 1-6).
[19] Chao, S. H., Goel, S. C., & Lee, S. S. (2007). A seismic design lateral force distribution based on inelastic state of structures. Earthquake Spectra, 23(3), 547-569.
[20] Chao, S. H., & Goel, S. C. (2008). Performance-based plastic design of special truss moment frames. Engineering journal, 45(2), 127-150.
[21] Sahoo, D. R., & Chao, S. H. (2010). Performance-based plastic design method for buckling-restrained braced frames. Engineering Structures, 32(9), 2950-2958.
[22] Kharmale, S. B., & Ghosh, S. (2013). Performance-based plastic design of steel plate shear walls. Journal of Constructional Steel Research, 90, 85-97.
[23] Liao, W. C., & Goel, S. C. (2014). Performance-Based Seismic Design of RC SMF Using Target Drift and Yield Mechanism as Performance Criteria. Advances in Structural Engineering, 17(4), 529-542.
[24] Bai, J., & Ou, J. (2016). Earthquake-resistant design of buckling-restrained braced RC moment frames using performance-based plastic design method. Engineering Structures, 107, 66-79.
[25] Gorji, M. S., & Cheng, J. R. (2018). Plastic analysis and performance-based design of coupled steel plate shear walls. Engineering Structures, 166, 472-484.
[26] McKenna, F., Fenves, G. L., Jeremic, B., & Scott, M. (2015). Open system for earthquake engineering simulation, 2000. URL http://opensees. berkeley. edu.[May 2008].
[27] Choi, I. R., & Park, H. G. (2010). Cyclic loading test for reinforced concrete frame with thin steel infill plate. Journal of Structural Engineering, 137(6), 654-664.
[28] ASCE 7 (2010). Minimum Design Loads For Buildings And Other Structures. American Society Of Civil Engineers, Reston, Virginia, USA.
[29] FEMA (2006). Improvement of Nonlinear Static Seismic Analysis Procedures. FEMA 440, Federal Emergency Management Agency, Washington D.C., USA.
[30] ACI Committee, American Concrete Institute, & International Organization for Standardization. (2014). Building code requirements for structural concrete (ACI 318-14) and commentary. American Concrete Institute.
[31] ETABS, C. (2015). 15.0. Berkeley. CA: Computers and Structures inc.
[32] Uang, C. M. (1991). Establishing R (or R w) and C d factors for building seismic provisions. Journal of Structural Engineering, 117(1), 19-28.
[33] Uang, C. M., & Maarouf, A. (1994). Deflection amplification factor for seismic design provisions. Journal of Structural Engineering, 120(8), 2423-2436.
[34] Krawinkler, H. E. L. M. U. T., & Nassar, A. A. (1992). Seismic design based on ductility and cumulative damage demands and capacities. Nonlinear seismic analysis and design of reinforced concrete buildings, 23-39.
[35] Miranda, E., & Bertero, V. V. (1994). Evaluation of strength reduction factors for earthquake-resistant design. Earthquake spectra, 10(2), 357-379.
[36] Newmark, N. M., & Hall, W. J. (1982). Earthquake spectra and design. Earth System Dynamics.
[37] ATC (1995). Structural response modification factors. ATC-19, Applied Technology Council, Redwood City, California.