بهینه‌سازی مشخصه‌های میراگر غیرخطی ویسکوز به منظور کاهش پاسخ سازه ی بتنی با رفتار خطی و غیرخطی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه شهرکرد، شهرکرد، ایران

2 کارشناس ارشد مهندسی سازه، واحد فناور آریان سازه زاگرس، پارک علم و فناوری، شهرکرد، ایران

چکیده

امروزه، کنترل ارتعاشات سازه در حین زلزله و همچنین کاهش پاسخ سازه از اهمیت بالایی برخوردار است. میراگرها یکی از انواع سیستم های کنترلی به‌منظور جذب انرژی زلزله و اتلاف آن جهت کاهش پاسخ سازه می باشند. هدف اصلی این مقاله، یافتن مشخصه های بهینه برای میراگر غیرخطی ویسکوز است که در قاب بتنی یک دهانه سه‌طبقه به صورت ضربدری در تمامی طبقات قرار دارد. فرض بر این است که سازه تحت زلزله ای مشخص قرارگرفته و هر دو نوع رفتار خطی و غیرخطی حین زلزله برای سازه در نظر گرفته می شود. جهت مدل سازی قاب بتنی و میراگرهای غیرخطی ویسکوز از نرم‌افزار اپنسیس استفاده می شود و پاسخ های سازه در گام های زمانی متفاوت با استفاده از روش عددی نیومارک، محاسبه می شوند. قیدهایی در نظر گرفته‌شده در حین فرآیند بهینه سازی شامل محدوده هایی برای پارامترهای میراگر غیرخطی ویسکوز (ضریب میرایی، سختی محوری و توان سرعت) و همچنین بیشینه قدر مطلق مقدار برش پایه می باشند و هدف یافتن مقادیر بهینه برای این پارامترها است به‌گونه‌ای که تحت بار زلزله ها ی در نظر گرفته‌شده، بیشینه قدر مطلق جابجایی بام سازه کمینه شود. نتایج نشان می دهند که این میراگر جهت کنترل سازه در ناحیه ی خطی بسیار مناسب می باشد و به ترتیب بیشینه جابجایی بام و بیشینه برش پایه را تحت زلزله ی السنترو به میزان 51/37 و 39/43 درصد کاهش می دهد درحالی‌که جهت بهبود رفتار سازه در ناحیه ی غیرخطی چندان مناسب نمی باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization of nonlinear viscous damper characteristics to reduce the response of concrete structures with linear and nonlinear behaviours

نویسندگان [English]

  • Reza Kamgar 1
  • Mohammad Reza Babadaei Samani 2
  • Heisam Heidarzadeh 1
1 Department of Civil Engineering, Shahrekord University, Shahrekord, Iran
2 Master of Science of Civil Engineering, Technology Unit of Arian Saze Zagros, Chaharmahal Science and Technology Park, Shahrekord, Iran
چکیده [English]

Nowadays, controlling vibration of a structure in earthquakes and reducing the structural responses are of great importance. Dampers are a type of systems controlling the absorption of the earthquake energy and dissipating it in order to reduce the structural responses. The main objective of this paper is to find the optimal characteristics of the nonlinear viscose dampers placed at all storeys in a three-storey single bay concrete frame. It is assumed that the structure is subjected to the Elcentro and Gazli earthquakes; and both linear and nonlinear behaviors are considered for the structure during the earthquakes. OpenSees software is used to model the concrete frame and nonlinear viscous dampers. The structural responses are calculated at different time steps, using Newmark's numerical method. A series of constraints which are considered during the optimization process include the limits for parameters of nonlinear viscous damper (Viscous coefficient, axial stiffness and damper exponent) and the maximum absolute value for base shear. The objective is to find optimal values for these parameters in such a way that the maximum absolute value would be minimized for the roof displacement during the earthquake load. The results show that the nonlinear viscous damper is very suitable to control the structure responses when it has linear behavior. In fact, when the structure is subjected to the Elcentro earthquake, the maximum absolute value of the roof displacement and base shear decrease by 37.51% and 43.39%, respectively. The nonlinear behavior of the concrete frame does not improved considerably when the nonlinear viscous dampers are used to control the nonlinear response of the structure in the earthquake.

کلیدواژه‌ها [English]

  • Dynamic analysis
  • Nonlinear viscous damper
  • Optimization
  • Vibration control
  • Gray wolf algorithm
  • OpenSees
 
[1]          Lee, D. and Taylor, D P. (2001). Viscous damper development and future trends. The Structural Design of Tall and Special Buildings, 10(5), 311-320.
[2]          Høgsberg, J. and Brodersen, M L. (2016). Hybrid viscous damper with filtered integral force feedback control. Journal of Vibration and Control, 22(6), 1645-1656.
[3]          Silwal, B. and Michael, R J. and Ozbulut, O E. (2015). A superelastic viscous damper for enhanced seismic performance of steel moment frames. Engineering Structures, 105, 152-164.
[4]          Tubaldi, E. and Ragni, L. and Dall'Asta, A. (2015). Probabilistic seismic response assessment of linear systems equipped with nonlinear viscous dampers. Earthquake Engineering and Structural Dynamics, 44(1), 101-120.
[5]          Naghipour, M. and Salim Bahrami, S R. (2017). Improving the seismic performance of eccentrically braced frames by using a ductile element. Journal of Structural and Constructional Engineering, 4(3), 18-27.
[6]          Mahmoudi Sahebi, M. and Khanjani, F. (2017). Evaluation of seismic performance of X bracing systems equipped with flexural yielding dampers. Journal of Structural and Constructional Engineering, 4(2), 123-138.
[7]          Yu, Y-J. and Tsai, K-C. and Li, C-H. and Weng, Y-T. and Tsai, C-Y. (2013). Earthquake response analyses of a full-scale five-story steel frame equipped with two types of dampers. Earthquake Engineering and Structural Dynamics, 42(9), 1301-1320.
[8]          Akcelyan, S. and Lignos, D G. and Hikino, T. (2018). Adaptive numerical method algorithms for nonlinear viscous and bilinear oil damper models subjected to dynamic loading. Soil Dynamics and Earthquake Engineering, 113, 488-502.
[9]          Kamgar, R. and Hatefi, S M. and Majidi, N. (2018). A Fuzzy Inference System in Constructional Engineering Projects to Evaluate the Design Codes for RC Buildings. Civil Engineering Journal, 4(9), 2155-2172.
[10]        Kamgar, R. and Khatibinia, M. and Khatibinia, M. (2019). Optimization criteria for design of tuned mass dampers including soil–structure interaction effect. Internationa Journal of Optimization in Civil Engineering, 9(2), 213-232.
[11]        Kaveh, A. and Ilchi Ghazaan, M. (2015). A comparative study of CBO and ECBO for optimal design of skeletal structures. Computers and Structures, 153, 137-147.
[12]        Kaveh, A. and Bakhshpoori, T. and Azimi, M. (2015). Seismic optimal design of 3D steel frames using cuckoo search algorithm. The Structural Design of Tall and Special Buildings, 24(3), 210-227.
[13]        Kamgar, R. and Khatibinia, M. (2017). Multi-objective optimization design of tuned mass damper system subjected to critical excitation. Modares Civil Engineering Journal, 17(4), 153-164.
[14]        Kamgar, R. and Samea, P. and Khatibinia, M. (2018). Optimizing parameters of tuned mass damper subjected to critical earthquake. The Structural Design of Tall and Special Buildings, 27(7), e1460.
[15]        Khatibinia, M. and Gholami, H. and Kamgar, R. (2018). Optimal design of tuned mass dampers subjected to continuous stationary critical excitation. International Journal of Dynamics and Control, 6(3), 1094-1104.
[16]        Najafzadeh, M. and Tafarojnoruz, A. (2016). Evaluation of neuro-fuzzy GMDH-based particle swarm optimization to predict longitudinal dispersion coefficient in rivers. Environmental Earth Sciences, 75(2), 157.
[17]        Khaledy, N. and Habibi, A R. and Memarzadeh, P. (2019). Minimum weight and drift design of steel moment frames subjected to blast. International Journal of Optimization in Civil Engineering, 9(1), 39-63.
[18]        Khatibinia, M. and Yazdani, H. (2018). Accelerated multi-gravitational search algorithm for size optimization of truss structures. Swarm and Evolutionary Computation, 38, 109-119.
[19]        Gholizadeh, S. and Poorhoseini, H. (2016). Seismic layout optimization of steel braced frames by an improved dolphin echolocation algorithm. Structural Multidisciplinary Optimization, 54(4), 1011-1029.
[20]        Mazzoni, S. and McKenna, F. and Scott, M H. and Fenves, G L. (2006). OpenSees command language manual. Pacific Earthquake Engineering Research Center.
[21]        Soong, T T. and Dargush, G F. (1997). Passive energy dissipation systems in structural engineering. Wiley
[22]        Symans, M. and Constantinou, M. (1998). Passive fluid viscous damping systems for seismic energy dissipation. ISET Journal of Earthquake Technology, 35(4), 185-206.
[23]        Mirjalili, S. (2015). How effective is the Grey Wolf optimizer in training multi-layer perceptrons. Applied Intelligence, 43(1), 150-161.
[24]        Mirjalili, S. and Mirjalili, S M. and Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46-61.
[25]        Mirjalili, S. and Saremi, S. and Mirjalili, S M. and Coelho, L d S. (2016). Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization. Expert Systems with Applications, 47, 106-119.
[26]        Chopra, A K. (2017). Dynamics of structures: theory and applications to earthquake engineering. Prentice-hall International Series.
[27]        Choi, I-R. and Park, H-G. (2011). Cyclic Loading Test for Reinforced Concrete Frame with Thin Steel Infill Plate. Journal of Structural Engineering, 137(6), 654-664.
[28]        Benavent-Climent, A. and Oliver-Saiz, E. and Donaire-Avila, J. (2015). New connection between reinforced concrete building frames and concentric braces: Shaking table tests. Engineering Structures, 96, 7-21.
[29]        Dynamic analyses of 1-story moment frame with viscous dampers, (2018). Dynamic analyses of 1-story moment frame with viscous dampers. Available at: http://opensees.berkeley.edu/wiki/index.php/Dynamic_Analyses_of_1-Story_Moment_Frame_with_Viscous_Dampers
[30]        Pall, A S. and Marsh, C. (1982). Response of friction damped braced frames. Journal of Structural Engineering, 108(9), 1313-1323.