اثر سخت‌کننده‌ها بر مشارکت قاب پیرامونی و رفتار لرزه‌ای دیوار برشی فولادی سخت‌شده

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه عمران، واحد شهرقدس، دانشگاه آزاد اسلامی

2 کارشناس ارشد زلزله

چکیده

استفاده از سخت‌کننده در دیوارهای برشی فولادی باعث بهبود رفتار لرزه‌ای سیستم می‌گردد. میزان نیروی انتقالی از ورق فولادی به قاب پیرامونی، از موضوعات مورد بحث طراحان ساختمان در طراحی بهینه دیوارهای برشی فولادی می‌باشد. بخصوص با تعبیه سخت‌کننده‌ها، مقدار نیروی انتقالی به ستونها به میزان چشم گیری توسط روابط طراحی آیین‌نامه‌ها کاهش داده می‌شود که موضوع بحث در این مقاله می‌باشد. در این مقاله رفتار لرزه‌ای یک ساختمان 10 طبقه با سیستم دیوار برشی فولادی با سخت‌کننده در سه حالت متفاوت طراحی بررسی گردیده است. در حالت اول، طراحی با رعایت الزامات آیین‌نامه طراحی لرزه‌ای ساختمان‌های فولادی آمریکا و رعایت حداکثر فاصله‌ی مجاز بین سخت‌کننده‌ها انجام گردیده است. در حالت دوم، از اثرات کاهشی مد نظر آیین‌نامه بر قاب پیرامونی صرف نظر شده و در عوض، حداقل سختی مشابه دیوارهای بدون سخت کننده تامین شده است. در حالت سوم، حداکثر فاصله‌ی مجاز بین سخت‌کننده‌ها بیشتر از معیارهای ارایه شده توسط آیین‌نامه در نظر گرفته شده و طراحی بهینه ارائه گردیده است. بدین ترتیب طراح می‌تواند زمان بین تسلیم ورق فولادی و کمانش آن را مدیریت کند. در این حالت، ظرفیت طبقه ترکیبی از ظرفیت کمانش برشی و تسلیم برشی خواهد بود. با استفاده از روابط تئوری اندرکنش ورق و قاب (PFI) و مدل‌های المان محدود، مشخص گردید که میزان مشارکت قاب پیرامونی و نیروهای انتقالی به آن با توجه به فاصله سخت‌کننده‌ها تغییر می نماید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Stiffeners on Contribution of Peripheral Frame and Seismic Behavior of Stiffened Steel Plate Shear Wall

نویسندگان [English]

  • Parviz Ebadi 1
  • masoud pishbin 2
1 Department of Civil Engineering, Shahr-e-Qods Branch, Islamic Azad University
2 Master of Science in Earthquake Engineering
چکیده [English]

Using Stiffener in steel plate shear wall (SPSW) improves seismic behavior of the system. The transferred force from the steel plate to the peripheral frame is one of challenging topics that discussed by the designers in optimal design of SPSW. Particularly, with the insertion of stiffeners, the amount of transferred force to the columns significantly reduced by the building codes. In this paper, the seismic behavior of a 10-story building with stiffened SPSW investigated in three different design phases. In the first phase, seismic design requirements of American Institute of Steel Construction (AISC) considered with the maximum permissible spacing between the stiffeners. In the second phase, the reductive effects of the building code on transferred forces to the peripheral frame ignored and instead, the minimum required stiffness of peripheral frame considered similar to SPSW without stiffeners. In the third phase, the distance between the stiffeners increased and the optimal design philosophy discussed. In this way, the designer can manage the yielding or buckling of the steel plate. Therefore, the capacity of the floor will be a combination of shear buckling and yield capacity of plate. Plate-Frame Interaction (PFI) theory and finite element tools approved that the peripheral frame design forces and its contribution in seismic behavior of system can vary according to distance of stiffeners.

کلیدواژه‌ها [English]

  • Steel Plate Shear Wall
  • Stiffener
  • Ductility
  • Energy Absorption
  • Peripheral Frame and Wall Contribution
[1] Takahashi, Y., Takemoto, Y., Takeda, T., & Takagi, M. (1973). Experimental study on thin steel shear walls and particular bracings under alternative horizontal load. In Preliminary Report, IABSE, Symp. On Resistance and Ultimate Deformability of Tsructures Acted on by Well-defined Repeated Loads, Lisbon, Portugal. 185-191.
­[2] Nakashima, M., Iwai, S., Iwata, M., Takeuchi, T., Konomi, S., Akazawa, T., & Saburi, K. (1994). Energy dissipation behaviour of shear panels made of low yield steel. Earthquake engineering & structural dynamics, 23(12), 1299-1313.
­[3] Alinia, M. M., & Dastfan, M. (2007). Cyclic behaviour, deformability and rigidity of stiffened steel shear panels. Journal of Constructional Steel Research, 63(4), 554-563.
[4] Astaneh-Asl, A. (2001). Seismic behavior and design of steel shear walls.. Rep. Prepared for Structural Steel Education Council, Univ. of California at Berkeley, Berkeley, Calif.
[5] Astaneh-Asl, A., & Zhao, Q. (2002, April). Cyclic behavior of steel shear wall systems. In Annual Stability Conference (pp. 18015-3191). Seattle: Structural Stability Research Council.
[6] Sabouri-Ghomi, S. and Asad Sajjadi, R. (2008). Experimental studies behavior coefficient and energy absorption of steel plate shear walls with and without stiffeners. Journal of Steel and Structures Research, The fourth year, Number 3,­(in Persian).
[7] Sabouri-Ghomi, S., & Sajjadi, S. R. A. (2012). Experimental and theoretical studies of steel shear walls with and without stiffeners. Journal of Constructional Steel Research, 75, 152-159.
­[8] Sabouri-Ghomi, S., & Mamazizi, S. (2015). Experimental investigation on stiffened steel plate shear walls with two rectangular openings. Thin-Walled Structures, 86, 56-66.
­[9] Sabouri-Ghomi, S., Mamazizi, S., & Alavi, M. (2015). An Investigation into Linear and Nonlinear Behavior of Stiffened Steel Plate Shear Panels with Two Openings. Advances in Structural Engineering, 18(5), 687-700.
­[10] Wang, M., Yang, W., Shi, Y., & Xu, J. (2015). Seismic behaviors of steel plate shear wall structures with construction details and materials. Journal of Constructional Steel Research, 107, 194-210.
­[11] Guo, H. C., Hao, J. P., & Liu, Y. H. (2015). Behavior of stiffened and unstiffened steel plate shear walls considering joint properties. Thin-Walled Structures, 97, 53-62.
­[12] Ebadi, P. & Pishbin, M. and Farajloomanesh, S. and Sabouri-Ghomi, S. (2015). The Effect of The Ratio of Shear Buckling Stress to Shear Yield Stress in Seismic Design System of Special Steel Plate Shear Wall with Stiffener, 6th National Conference on Steel and Structure, Olympic Hotel in Tehran-Iran, (in Persian).
[13] Ebadi, P. and Pishbin, M. and Farajloomanesh, S. (2016). The Effect of Changes in The Distance Between Stiffeners in Seismic Design System of Steel Plate Shear Wall with Stiffener, 2nd National Conference on Structural Engineering of Iran, Amirkabir University in Tehran-Iran, (in Persian).
[14] Ebadi, P. and Pishbin, M. (2017). Contribution of Steel Plate and Peripheral Frame in Optimized Design of Steel Plate Shear Wall with Stiffeners, 2nd International Conference on Steel and Structure, Olympic Hotel in Tehran-Iran, (in Persian).
[15] AISC, ANSI/AISC 341-10, (2010). Seismic provisions for structural steel Buildings, American Institute of steel construction Inc, Chicago, IL.
[16] AISC DESIGN GUIDE 20, (2010). Steel plate shear wall, American Institute of steel Construction, Inc., Chicago, IL.
[17] CAN/CSA S16-01, Limit States Design of Steel Structures.
[18] Sabouri-Ghomi, S. (2001).  Lateral Load Resistin Systems, an Introduction to Steel Shear Walls (SSW). Vol. 1. Tehran: Angizeh Publishing, (in Persian).
[19] ASCE/SEI 7-10. (2010). Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineering.
[20] AISC, ANSI/AISC 360-10, (2010). Specification for structural steel Buildings, American Institute of steel construction Inc, Chicago, IL.
[21] FEMA356 (2000). NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington (DC).
[22] ATC-40, (1996). Seismic evaluation and retroit of concrete buildings, applied technology council.
[23] ATC-24, (1992). Guidelines for seismic testing of components of steel structures, report-24, applied technology council.
[24] Asad Sajjadi, S. (2009). Investigation of the behavior of steel plate shear walls with opening. PhD Thesis. Tehran: Khaje-Nasir Toosi University of Technology, (in Persian).
[25] Sabouri-Ghomi, S. and Asad Sajjadi, R.(2008). Experimental study of seismic behavior factor and energy absorption of ductile steel plate shear walls with and without opening. J Steel Struct. (in Persian).