بررسی تأثیر گام فنر بر عملکرد بتن حاوی فنر فولادی کم‌کربن بازیافتی

نوع مقاله : یادداشت پژوهشی

نویسندگان

1 دانشجوی دکتری سازه، دانشکده مهندسی عمران، دانشگاه سمنان

2 دانشیار، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

3 دانشگاه گرمسار

چکیده

یکی از مهمترین پارامترهای تعیین‌کننده در مقاومت فنر و مقاومت بتن حاوی فنر، طول گام آن می‌باشد. بنابراین در این مقاله با افزودن فنرهای فولادی کم‌کربن از جنس گالوانیزه با قطر، تعداد گام و درصدهای اختلاط مختلف به بتن خودتراکم، سعی در بهبود خواص مکانیکی آن شده است. بدین منظور فنرهایی با قطر 8، 12 و 16 میلی‌متر و با ضخامت 8/0 میلی متر، با تعداد گام‌های دو، چهار و شش در درصدهای حجمی 2/0 و 4/0 به بتن خودتراکم افزوده شده و آزمایشات مقاومت فشاری (نمونه استوانه‌ای به ابعاد 10*20 سانتی‌متر)، کششی (نمونه استوانه‌ای به ابعاد 10*20 سانتی‌متر) و خمشی (تیر منشوری به ابعاد 10*10*50 سانتی‌متر) بر روی آن‌ها انجام شد. نتایج حاکی از آن است که استفاده از فنر با قطر 12 میلی‌متر مقاومت فشاری، کششی و خمشی بتن خودتراکم را به ترتیب تا 29، 52 و 36 درصد افزایش داده اما استفاده از فنر با قطر 16 میلی متر نه‌تنها خصوصیات مکانیکی بتن خودتراکم را افزایش نداده بلکه کاهش نیز می‌دهد. بعلت سختی بالا و قرار داشتن قطر فنر 8 میلی متر در محدوده مابین سایز سنگدانه ها، استفاده از آن در جهت بهبود خواص مکانیکی بتن خودتراکم نیازمند تحقیقات و شناخت بیشتر می باشد. همچنین نقش اصلی در تعیین مقاومت بتن حاوی فنر را قطر فنرها ایفا کرده و تعداد گام فنر الزاماً نمی‌تواند ملاک تعیین افزایش یا کاهش مقاومت بتن باشد. بعنوان جمع‌بندی کلی می توان بیان نمود که استفاده از فنرهای با تعداد شش گام، عملکرد مناسبی ندارند اما استفاده از فنرهای با دو و چهار گام با توجه به درصد استفاده و همچنین قطر فنر مورد استفاده، می توانند مقاومت فشاری، کششی و خمشی را افزایش دهند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study the Effect of Springboard on Concrete Performance Containing Low-Carbon Steel Spring

نویسندگان [English]

  • ghasem pachideh 1
  • majid Gholhaki 2
  • amin moshtagh 3
1 Civil faculty- semnan university
2 Associate Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
3 garmsar university
چکیده [English]

One of the most important parameters in spring resistance and strength of concrete containing spring is its step length. In this paper, by adding a low-carbon steel spring with diameter, a number of steps and various mixing rates to self-compacting concrete, attempts have been made to improve its mechanical properties. For this purpose, springs of 8, 12 and 16 mm in diameter, 0.8 mm in thickness, with the number of steps of two, four and six in volumes of volumes of 0.2 and 0.4 in self-supporting concrete were added and compressive strength tests A cylindrical sample measuring 10 x 20 cm), tensile (a cylindrical sample measuring 10 x 20 cm) and a flexural beam (10 x 10 x 50 cm). The results indicate that using a 12 mm diameter spring compressive strength, the tensile and flexural strength of self-compacting concrete increased up to 29, 52 and 36%, but the use of a 16 mm diameter spring did not increase the mechanical properties of self-compacting concrete It also reduces. Due to the high stiffness and positioning of the 8 mm spring diameter within the size of the aggregate, the use of it to improve the mechanical properties of self-compacting concrete requires more research and recognition. Also, the main role in determining the strength of concrete containing springs is played by the diameter of the springs, and the number of step springs will not necessarily be a criterion for determining the increase or decrease of concrete strength. As a general conclusion, it can be argued that the use of six-step springs is not suitable, but the use of two- and four-step springs with regard to the percentage of use and the diameter of the spring used can increase the compressive strength, tensile and flexural strength Give.

کلیدواژه‌ها [English]

  • Self-Compacting Concrete
  • Low-Carbon Recycled Steel Spring
  • Mechanical Properties
  • Galvanized
  • Step
[1] M. Grzybowski, S.P. Shah. (1990). “Shrinkage cracking of fiber reinforced concrete”, ACI Materials. 87 (2) 138– 148.
[2] I. Padron, R.F. Zollo. (1990). “Effect of synthetic fibers on volume stability and cracking of portland cement concrete and mortar”, ACI Materials. 87 (4) 327– 332.
[3] Z. Bayasi, J. Zeng. (1993). “Properties of polypropylene fiber reinforced concrete”, ACI Materials. 90 (6) 605– 610.
[4] P. Soroushian, H. Elyamany, A. Tlili, K. Ostowari. (1998). “Mixed-mode fracture properties of concrete reinforced with low volume fractions of steel and polypropylene fibers, Cement and Concrete Composite. 20, 67– 78.
[5] K. Wang, S.P. Shah, P. Phuaksuk. (2001). “Plastic shrinkage cracking in concrete materials—Influence of fly ash and fibers”, ACI Materials. 98 (6) 458– 464.
[6] Z. Bayasi, M.A. Dhaheri. (2002). “Effect of exposure to elevated temperature on polypropylene fiber-reinforced concrete”, ACI Materials. 99 (1) 22– 26.
[7] R.F. Zollo, C.D. Hays. (1998). “Engineering material properties of a fiber reinforced cellular concrete”, ACI Materials. 95 (5) 631– 635.
[8] B. Mu, C. Meyer, S. Shimanovich. (2002). “Improving the interface bond between fiber mesh and cementitious matrix”, Cement and Concrete Research. 32 (5) 783– 787.
[9] Sanjuan MA, Moragues A. (1997). “Polypropylene-x mortar mixes: optimization to control plastic shrinkage”. Composite Science and Technology, 57:655–60.
[10] Qian CX, Stroeven P. (2000). “Development of hybrid polypropylene–steel fibrereinforced concrete”. Cement and Concrete Research. 30:63–9.
[11] Wu Yao, Jie Li, Keru Wu. (2003). “Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction”. J. Cement and Concrete Research 33. 27-30.
[12] Quresh L A et. Al. (2008). "Effect of mixing steel fibers and silica fume on properties of high strength concrete", Proceedings. International Conference Concrete: Constructions sustainable option, Dundee.UK, pp 173-185.
[13] Zeiml, Matthias.,Leithner, David., Lackner, Roman. AndMang, A. (2006). “How Do Polypropylene Fibers Improve The Spalling Behavior of In-Situ Concrete?”. Cement and Concrete Research, 36, 929–942.
[14] N. Banthia, A. Moncef, K. Chokri, J. Sheng. (1995). “Uniaxial tensile response of microfiber reinforced cement composites ”, Journal of Materials and Structures, RILEM 28 (183), p.p. 507–517.
[15] S.P. Shah.  (1991). “Do fibers increase the tensile strength of cement-based matrices ”, ACI Materials, RILEM 88 (6), p.p. 595–602.
[16] Banthia N, Sheng J. (1996). “Fracture toughness of micro-fiber reinforced cement composites”. Cem Concr Comp. 18(4):251–69.
[17] Bayasi MZ, Zeng J. (1997). “Composite slab construction utilizing carbon fiber reinforced mortar”. ACI Structural. 94(4):442–6.
[18] Dwarakanath HV, Nagaraj TS. (1992). “Deformational behavior of fiber-reinforced concrete beams in bending”. Structural  Engineering. ASCE;118(10):2691–8.
[19] Mu B, Li Z, Peng J. (2000). “Short fiber-reinforced cementitious extruded plates with high percentage of slag and different fibers. Cement and Concrete Research. 30(8):1277–82.
[20] Li VC, Kanda T. (1998). “Engineered cementitious composites for structural applications”. Material of Civil Engineering, ASCE 10(2):66–9.
[21] Kanda T, Li VC. (1998). “Interface property and apparent strength of a high-strength hydrophilic fiber in cement matrix”. J Material of Civil Engineering, ASCE;10(1):5–13.
[22] Li VC, Horii H, Kabele P, Kanda T, Lim YM. (2000). “Repair and retrofit with engineered cementitious composites”. Engineering Fracture Mechanic. 65(2–3):317–34.
[23] Limbachiya, M. C., Leelawat, T., & Dhir, R. K. (2000). “Use of recycled concrete aggregate in high-strength concrete”. Materials and Structures, 33, 574–580.
[24] Ajdukiewicz, A. Kliszczewicz, A. (2002). “Influence of recycled aggregates on mechanical properties of HP/HPC”, Cement and Concrete Composite. 24(2): 269-279.
[25] C.A. Carneiro, P.R.L. Lima, M.B. Leite, R.D.T. Filho. (2008). “Compressive stress–strain behavior of steel fiber reinforced-recycled aggregate concrete”, Cement and Concrete Composites, Vol. 46, pp. 886-893.
[26]  Khaloo, A. Khodavirdi, M.M. Hoseini, P. (2010). “Analysis the Building of Self-Compacting Concrete Using Coarse Recycled Grains". Journals of Concrete Research. Year Three, No.1, pp. 9-20.
[27] Sung Bae Kim, Na Hyun Yi, Hyun Young Kim, Jang-Ho Jay Kim, Young-Chul Song. (2010). “Material and structural performance evaluation of recycled PET fiber reinforced concrete”, Cement & Concrete Composites. 32, 232-240.
[28] Lankard DR. (1972). “Prediction of the flexural strength properties of steel fibrous concrete”. In: Proceedings of the CERL conference on fibrous concrete, construction engineering research laboratory, Champaign. p. 101–23.
[29] Xu Z, Hao H, Li HN. (2012). “Experimental study of dynamic compressive properties of fibre reinforced concrete material with different fibres”. Material and Design. 33:42–55.
[30] Xu Z, Hao H, Li HN. (2012). “Dynamic tensile behaviour of fibre reinforced concrete with spiral fibres”. Material and Design 42:72–88.
[31] Sadrmomtazi, A. Tahmooresi, M.H. Nosrati, H. (2014). “Evaluration of Fiber Reinforced Containing Recyvled Concrete Aggregates with Non-Destructive Methods”. Journal of Concrete Thechnology. (6), Vol. 1, pp. 73-86.
[32] Ahmadi, M. Hassani, A. Soleymani, M. (2015). “Role of Recycled Steel Fibers from Tires on Concrete Containing Recycled Aggregate from Building Waste”. Journal of Concrete Thechnology. (7), Vol. 2, pp. 57-68.
[33] Mastali, M. Dalvand, A. Sattarifard, A. (2016). “The impact resistance and mechanical properties of the reinforced self compacting concrete incorporating recycled CFRP fiber with different lengths and dosages”. Composites. DOI: 10.1016/j.compositesb.
[34] Shirazi Bidabadi, M. Akbari, M. (2017). “Evaluation of Mechanical Properties of Fiber-Reinforced Recycled Concrete: The Effect of Dimensions and Amount of Recycled Aggregate, Type and Amount of Fibers". Journal of Structural engineering and construction. Fourth Year, No.1, pp. 138-150.
[35] “The European guidelines for self-compacting concrete; specification production and use”, (2005), EFNARC.
[36] INSO581. (2015). concrete-making curing concrete test specimens in the laboratory- code of practice, 2nd.revision.
[37] NF EN 12390-13 AFNOR. (2013). Testing hardened concrete, in: Determination of Secant Modulus of Elasticity in Compression, pages 18–455.
[38] Gholhaki, M. Pachideh, GH. (2018). “Assessing Effect of Temperature Rise on the Concrete Containing Recycled Metal Spring and Its Comparison with Ordinary Fibres“. Journal of Structural and Construction Engineering (JSCE), DOI: 10.22065/jsce.2018.93911.1278.