اثر انتخاب نگاشت زلزله بر انرژی هیسترزیس و شاخص خرابی پارک-انگ در قاب-های خمشی بتن مسلح

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشیار، دانشکده مهندسی عمران، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

2 دانشکده مهندسی عمران دانشگاه صنعتی نوشیروانی بابل

چکیده

یکی از منابع اصلی عدم قطعیت در تعیین پاسخ‌های لرزه‌ای سازه‌ها، عدم قطعیت در تحریک وارد بر سازه ناشی از زلزله است. در سال‌های اخیر با رواج روش طراحی لرزه‌ای سازه‌ها بر اساس عملکرد اهمیت مسئله انتخاب نگاشت‌های زلزله به عنوان تحریک ورودی بیشتر نمایان شده و توجه محققین بسیاری را جلب نموده است. روش متداول در انتخاب نگاشت‌های زلزله در این روش، انتخاب براساس معیار شدت است. شکل طیف پاسخ یک معیار شدت نسبتا موفق در برآورد برخی از پاسخ‌های لرزه‌ای مانند حداکثر گریز نسبی طبقات می‌باشد. در این مطالعه کفایت این معیار شدت در تعیین انرژی هیسترزیس تلف شده و برای اولین بار در تعیین حداکثر شاخص خرابی پارک انگ در مفاصل پلاستیک سازه در قاب‌های خمشی بتن مسلح بررسی شد. به این منظور چهار قاب خمشی ویژه بتن مسلح با رفتار غیرخطی مدل‌سازی شده و هر یک تحت اثر یک دسته از نگاشت‌های زلزله که براساس معیار شدت شکل طیف پاسخ با استفاده از روش طیف شرطی انتخاب شده بودند، مورد تحلیل قرار گرفت. سپس دو پاسخ انرژی هیسترزیس سازه و شاخص خرابی پارک انگ از نتایج تحلیل اقتباس شده و همبستگی آن‌ها با چند معیار شدت ثانویه به صورت کمّی بررسی شد. انتخاب معیارهای شدت ثانویه به نحوی انجام شد که نشان دهنده ویژگی‌های متفاوتی از قبیل محتوای فرکانسی و مدت زمان حرکات قوی در نگاشت‌های زلزله باشند. نتایج نشان داد که معیار شدت شکل طیف پاسخ در انتخاب نگاشت‌های زلزله برای برآورد پاسخ انرژی هیسترزیس و شاخص خرابی پارک انگ دارای کفایت لازم نبوده و پیش‌بینی دقیق‌تر این پاسخ‌ها نیازمند ارائه معیار‌های شدت جدید و مطالعه بیشتر در زمینه انتخاب نگاشت می‌باشد. از معیارهای شدت ثانویه نیز معیارهای مرتبط با انرژی و مدت زمان حرکات قوی بیشترین همبستگی را با دو پاسخ انرژی هیسترزیس و شاخص خرابی پارک انگ داشتند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Record Selection Technique on Dissipated Hysteresis Energy and Park Ang Damage Index in Moment Resisting RC Frames

نویسندگان [English]

  • Gholamreza Abdollahzadeh 1
  • Mohammad Sazjini 2
1 Associate Professor, Department of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran
2 PhD Candidate, Faculty of Civil Engineering, Babol Noshirvani University of Technology.
چکیده [English]

The main sources of the uncertainty in estimation of structural seismic responses is the uncertainty of the earthquake records as the input excitations. In recent years, along with the development of performance-based seismic design approaches, importance of the record selection strategies in nonlinear response history analysis of structures has been highlighted and has attracted the attention of many researchers. Record selection in performance-based seismic design approaches is often done based on the intensity measure of the records. The spectral shape has been introduced as a powerful intensity measure in record selection techniques for estimation of some structural responses such as the maximum inter-story drift ratio. In the present study, the sufficiency of the spectral shape in assessment of hysteresis energy of the structure and the maximum Park Ang damage index in plastic hinges has been investigated in special moment-resisting RC frames. In this way, four 2D structural models of special moment-resisting RC frames with inelastic characteristics have been analyzed under a set of strong ground motion records selected based on the spectral shape by the conditional spectrum method. After determination of numerical values of hysteresis energy of the structure and maximum Park-Ang damage index in the plastic hinges, the correlation of such responses have been investigated with the various secondary intensity measure. These intensity measures are selected such that they cover various properties of strong ground motion records such as frequency content and duration. The results indicate that spectral shape is not sufficient for prediction of hysteresis energy and Park-Ang damage index of special moment-resisting RC frames. To obtain an unbiased and reliable estimate of such responses, more studies on record selection strategies is needed. Among the secondary intensity measure, those associated with the energy content and duration of the records are more correlated with the aforementioned structural responses.

کلیدواژه‌ها [English]

  • Nonlinear response history analysis
  • Intensity measure
  • Record selection
  • Spectral shape
  • Conditional spectrum
  • Dissipated hysteresis energy
  • Park-Ang damage index
  • Strong ground motion duration
[1] Padgett, J. E. and DesRoches, R. (2007). Sensitivity of seismic response and fragility to parameter uncertainty. Journal of Structural Engineering, 133(12), 1710-1718, https://doi.org/10.1061/(ASCE)0733-9445(2007)133:12(1710).
[2] Luco, N. and Cornell, C. A. (2007). Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions. Earthquake Spectra, 23(2), 357-392, https://doi.org/10.1193/1.2723158.
[3] Marafi, N. A., Berman, J. W. and Eberhard, M. O. (2016). Ductility‐dependent intensity measure that accounts for ground‐motion spectral shape and duration. Earthquake Engineering & Structural Dynamics, 45(4), 653-672, https://doi.org/
doi:10.1002/eqe.2678
.
[4] Shome, N., Cornell, C. A., Bazzurro, P. and Carballo, J. E. (1998). Earthquakes, records, and nonlinear responses. Earthquake Spectra, 14(3), 469-500, https://doi.org/10.1193/1.1586011.
[5] Bradley, B. A. (2010). A generalized conditional intensity measure approach and holistic ground-motion selection. Earthquake Engineering & Structural Dynamics, 39(12), 1321-1342, https://doi.org/10.1002/eqe.995.
[6] Eads, L., Miranda, E. and Lignos, D. G. (2015). Average spectral acceleration as an intensity measure for collapse risk assessment. Earthquake Engineering & Structural Dynamics, 44(12), 2057-2073, https://doi.org/10.1002/eqe.2575.
[7] Kohrangi, M., Bazzurro, P., Vamvatsikos, D. and Spillatura, A. (2017). Conditional spectrum‐based ground motion record selection using average spectral acceleration. Earthquake Engineering & Structural Dynamics, 46(10), 1667-1685, https://
doi.org/10.1002/eqe.2876
.
[8] Kwong, N. S. and Chopra, A. K. (2017). A generalized conditional mean spectrum and its application for intensity-based assessments of seismic demands. Earthquake Spectra, 33(1), 123-143, https://doi.org/10.1193/040416eqs050m.
[9] Jamshidiha, H. R., Yakhchalian, M. and Mohebi, B. (2017). Selection of appropriate intensity measure for collapse capacity prediction of low to mid-rise steel special moment resisting frames. Journal of Structural and Construction Engineering, 4(Special Issue 1), 98-109, https://doi.org/10.22065/jsce.2017.87785.1219.
[10] Maleki, M., Ahmady Jazany, R. and Ghobadi, M. S. (2018). Probabilistic seismic assessment of SMFs with drilled flange connections subjected to near-field ground motions. International Journal of Steel Structures, https://doi.org/10.1007/s13296-018-0112-0.
[11] Yahyazadeh, A. and Yakhchalian, M. (2018). Probabilistic residual drift assessment of SMRFs with linear and nonlinear viscous dampers. Journal of Constructional Steel Research, 148, 409-421, https://doi.org/10.1016/j.jcsr.2018.05.031.
[12] Yakhchalian, M., Ghodrati Amiri, G. and Eghbali, M. (2017). Reliable seismic collapse assessment of short-period structures using new proxies for ground motion record selection. Scientia Iranica, 24(5), 2283-2293, https://doi.org/10.24200/
sci.2017.4162
.
[13] Baker, J. W. and Cornell, C. A. (2006). Spectral shape, epsilon and record selection. Earthquake Engineering & Structural Dynamics, 35(9), 1077-1095, https://doi.org/doi:10.1002/eqe.571.
[14] Jayaram, N., Lin, T. and Baker, J. W. (2011). A computationally efficient ground-motion selection algorithm for matching a target response spectrum mean and variance. Earthquake Spectra, 27(3), 797-815, https://doi.org/10.1193/1.3608002.
[15] Chandramohan, R., Baker, J. W. and Deierlein, G. G. (2016). Quantifying the influence of ground motion duration on structural collapse capacity using spectrally equivalent records. Earthquake Spectra, 32(2), 927-950, https://doi.org/
10.1193/122813EQS298MR2
.
[16] Chandramohan, R., Baker, J. W. and Deierlein, G. G. (2016). Impact of hazard-consistent ground motion duration in structural collapse risk assessment. Earthquake Engineering & Structural Dynamics, 45(8), 1357-1379, https://doi.org/
10.1002/eqe.2711
.
[17] Hessami, K., Jamali, F. and Tabassi, H. (2003). Major active faults of Iran. Tehran, Iran: International Institute of Earthquake Engineering and Seismology, http://www.iiees.ac.ir/iiees/seismology/ActiveFault.pdf.
[18] Ambraseys, N. N. and Melville, C. P. (1982) A history of persian earthquakes, Cambridge: Cambridge University Press.
[19] Berberian, M. (1994) Natural hazards and the first earthquake catalogue of Iran: Historical hazards in Iran prior to 1900, Tehran, Iran: UNESCO and International Institute of Earthquake Engineering and Seismology.
[20] ISC (2018) Online bulletin search. [online] Thatcham, United Kingdom: International Seismological Centre, Available at: http://www.isc.ac.uk/iscbulletin/, [Accessed 30 Apr. 2018].
[21] IRSC (2018) Iranian seismological center. [online] Tehran, Iran: Institute of Geophysics, University of Tehran, Available at: http://irsc.ut.ac.ir/bulletin.php, [Accessed 30 Apr. 2018].
[22] IIEES (2018) Earthquake catalogue. [online] Tehran, Iran: International Institute of Earthquake Engineering and Seismology, Available at: http://www.iiees.ac.ir/en/eqcatalog/, [Accessed 30 Apr. 2018].
[23] Campbell, K. W. and Bozorgnia, Y. (2008). NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthquake Spectra, 24(1), 139-171, https://doi.org/10.1193/1.2857546.
[24] EZ-FRISK. Software for earthquake ground motion estimation (Version V7.52). Walnut Creek, CA: Fugro USA Land, Inc., http://www.ez-frisk.com/.
[25] Baker, J. W. and Jayaram, N. (2008). Correlation of spectral acceleration values from NGA ground motion models. Earthquake Spectra, 24(1), 299-317, https://doi.org/10.1193/1.2857544.
[26] Haselton, C. B. and Deierlein, G. G. (2007). Assessing seismic collapse safety of modern reinforced concrete moment frame buildings. Technical Report 156, Stanford, CA: John A. Blume Earthquake Engineering Center, Stanford University, http://purl.stanford.edu/ny266sf1883.
[27] ACI (2002) Building code requirements for structural concrete (ACI 318-02) and commentary (ACI 318r-02), Farmington Hills, Mich.: American Concrete Institute.
[28] Ibarra, L. F., Medina, R. A. and Krawinkler, H. (2005). Hysteretic models that incorporate strength and stiffness deterioration. Earthquake Engineering & Structural Dynamics, 34(12), 1489-1511, https://doi.org/10.1002/eqe.495.
[29] OPENSEES. (2018). Open system for earthquake engineering simulation. Berkeley, CA: University of California. http://opensees.berkeley.edu.
[30] Park, Y. J. and Ang, A. H. S. (1985). Mechanistic seismic damage model for reinforced concrete. Journal of Structural Engineering, 111(4), 722-739, https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(722).
[31] Kunnath, S. K., Reinhor, A. M. and Lobo, R. F. (1992). IDARC version 3: A program for the inelastic damage analysis of RC structures. Technical Report NCEER-92-0022, State University of New York, Buffalo NY: National Centre for Earthquake Engineering Research.
[32] Trifunac, M. D. and Brady, A. G. (1975). A study on the duration of strong earthquake ground motion. Bulletin of the Seismological Society of America, 65(3), 581-626.
[33] Stewart, J. P., Chiou, S.-J., Bray, J. D., Graves, R. W., Somerville, P. G. and Abrahamson, N. A. (2002). Ground motion evaluation procedures for performance-based design. Soil Dynamics and Earthquake Engineering, 22(9), 765-772, https://
doi.org/10.1016/S0267-7261(02)00097-0
.
[34] Bommer, J. J. and Acevedo, A. B. (2004). The use of real earthquake accelerograms as input to dynamic analysis. Journal of Earthquake Engineering, 8(sup001), 43-91, https://doi.org/10.1080/13632460409350521.