ارائه روابطی تجربی برای تخمین فرکانس اصلی ارتعاش برج های تاریخی مصالح بنایی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار، دانشکده مهندسی عمران و محیط زیست، دانشگاه صنعتی شیراز، شیراز، ایران

2 دانشجوی کارشناسی ارشد مهندسی زلزله، دانشگاه صنعتی شیراز

3 دانشکده مهندسی عمران و محیط زیست، دانشگاه صنعتی شیراز، شیراز، ایران

4 بخش مهندسی راه و ساختمان، دانشگاه شیراز

چکیده

بناهای تاریخی در هر کشور از جمله سازه های ارزشمند به شمار می روند. از این رو، اخیرا بحث ارزیابی عملکرد این گونه بناها تحت انواع بارها خصوصا زلزله مورد توجه قرار گرفته است. از این میان برج های تاریخی که عمدتا با مصالح بنایی بنا شده اند، به عنوان یکی از مرسوم ترین شکل های این نوع بناها محسوب می شوند که با کاربردهای مختلف نظیر مناره مسجد یا ناقوس کلیسا در سرتاسر جهان وجود دارند. در بررسی عملکرد برج های تاریخی مصالح بنایی در زلزله، مشخصات دینامیکی این نوع سازه یک از مهمترین مشخصات مورد نیاز است. از این میان فرکانس اصلی ارتعاش برج یکی از مهم ترین خصوصیات دینامیکی آن به شمار می رود. در این راستا تهیه روابطی برای تخمین فرکانس اصلی ارتعاش برج ها مفید است. در این مقاله، ابتدا مشخصات دینامیکی 38 برج تاریخی که توسط محققین پیشین با استفاده از آزمایش های دینامیکی درجا و یا با روش های تحلیلی استخراج شده اند، جمع آوری شده اند. آنگاه ضمن بررسی تاثیر عوامل مختلف بر فرکانس اصلی ارتعاش آنها، با انجام یک تحلیل آماری، روابطی تجربی برای تخمین فرکانس اصلی ارتعاش برج های تاریخی مصالح بنایی پیشنهاد شده است. بررسی متوسط خطای روابط پیشنهادی نشان می دهد که این روابط با دقت قابل قبولی برای تخمین فرکانس ارتعاش برج های تاریخی قابل استفاده می باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Empirical Equations for Estimation of the Fundamental Vibration Frequency of Historical Masonry Towers

نویسندگان [English]

  • M. A. Najafgholipour 1
  • hossein Darvishi 2
  • Seyed Mehdi Dehghan 3
  • Mahmoud Reza Maheri 4
1 Assistant Professor, Department of Civil and Environmental Engineering, Shiraz University of Technology, Shiraz, Iran
2 M.Sc. Student, Shiraz University of Technology
3 ِDepartment of Civil and Environmental Engineering, Shiraz University of Technology, Shiraz, Iran
4 Shiraz University
چکیده [English]

Historical buildings are valuable structures. Therefore, performance evaluation of these structures under different loadings such as seismic effects has been considered in several research projects in recent years. Masonry towers are known as one of the common types of historical structures that exist in different countries. To evaluate the seismic performance of masonry towers, their dynamic properties are needed. Among the dynamic characteristics of the towers, fundamental vibration frequency is known as the most important one. In this regard, formulations for estimation of the vibration frequency of these structures in useful. For this purpose, a database consisting properties of 38 towers which were identified through in-situ dynamic tests or numerical analysis before, are collected. Then, based on a nonlinear regression on the collected database, empirical equations are proposed for estimation of the vibration frequency of historical masonry towers. Evaluation of the database indicates that height of the towers is the most effective parameter on their vibration frequency. In addition, thickness of the perimeter walls, cross-section dimensions of the towers and elastic modulus of masonry can affect the dynamic response of the towers. The average errors of the estimated frequencies by means of the proposed equations indicate that the proposed equations have acceptable accuracy.

کلیدواژه‌ها [English]

  • Historical Towers
  • Fundamental Frequency
  • Masonry
  • Empirical Equation
  • Statistical Study
[1] Marra, A.M., Salvatori, L., Spinelli, P. and Bartoli, G., 2017. Incremental dynamic and nonlinear static analyses for seismic assessment of medieval masonry towers. Journal of Performance of Constructed Facilities, 31(4), p.04017032. Available at: https://doi.org/10.1061/(ASCE)CF.1943-5509.0001022
[2] Kouris, S.S. and Weber, M.K.K., 2011. Numerical Analysis of Masonry Bell-Towers under Dynamic Loading. Journal of Civil Engineering and Architecture, 5(8).
[3] Ivorra, S., Pallarés, F.J., Adam, J.M. and Tomás, R., 2010. An evaluation of the incidence of soil subsidence on the dynamic behaviour of a Gothic bell tower. Engineering Structures, 32(8), pp.2318-2325. Available at: https://doi.org /10.1016/j.engstruct.2010.04.007
[4] Valente, M. and Milani, G., 2016. Non-linear dynamic and static analyses on eight historical masonry towers in the North-East of Italy. Engineering Structures, 114, pp.241-270. Available at: [https://doi.org/10.1016/j. engstruct.2016.02.004]
[5] Casolo, S., Diana, V. and Uva, G., 2017. Influence of soil deformability on the seismic response of a masonry tower. Bulletin of Earthquake Engineering, 15(5), pp.1991-2014. Available at: [https://doi.org/10.1007 /s10518-016-0061-y]
[6] Peña, F., Lourenço, P.B., Mendes, N. and Oliveira, D.V., 2010. Numerical models for the seismic assessment of an old masonry tower. Engineering Structures32(5), pp.1466-1478. Available at: https://doi.org/10.1016/j.engstruct. 2010.01.027
[7] Gentile, C. and Saisi, A., 2007. Ambient vibration testing of historic masonry towers for structural identification and damage assessment. Construction and Building Materials21(6), pp.1311-1321. Available at: [https://doi.org /10.1016/j.conbuildmat.2006.01.007]
[8] Cimellaro, G.P., Piantà, S. and De Stefano, A., 2011. Output-only modal identification of ancient L’Aquila city hall and civic tower. Journal of structural engineering138(4), pp.481-491. Available at: [https://doi.org /10.1061/(ASCE)ST.1943-541X.0000494]
[9] Pieraccini, M., Dei, D., Mecatti, D. and Parrini, F., 2013. Dynamic testing of historic towers using an interferometric radar from an unstable measurement position. Journal of Nondestructive Evaluation32(4), pp.398-404. Available at: [https://doi.org/10.1007/s10921-013-0193-9]
[10] NTC2008, 2008. Norme tecniche per le costruzioni, D.M. 14/01/2008, Gazzetta Ufficiale n. 29 de 04.02.2008, Suppl. Ord. n.30; 2008.
[11] Española ND. Real Decreto 997/2002, de 27 de septiembre, por el que se aprueba la norma de construcción sismorresistente: parte general y edificación (NCSR-02). Boletín Oficial del Estado. 2002;244:35-898.
[12] Rainieri, C. and Fabbrocino, G., 2012. Estimating the elastic period of Masonry towers. In Topics in Modal Analysis I, Volume 5 (pp. 243-248). Springer, New York, NY. Available at: [https://doi.org/10.1007/978-1-4614-2425-3_ 22]
[13] Shakya, M., Varum, H., Vicente, R. and Costa, A., 2016. Empirical formulation for Estimating the fundamental frequency of slender masonry structures. International Journal of Architectural Heritage, 10(1), pp.55-66. Available at: [https://doi.org/10.1080/15583058.2014.951796]
[14] Kouris, S.S., 2012. Applied Earthquake Engineering in the Research of Vulnerable Masonry Structures. Journal of Civil Engineering and Science; Vol 1, No. 4, 39-46. Available at: [http://www.academicpub.org/jces/paperInfo .aspx?paperid =1300]
[15] Diaferio, M., Foti, D. and Potenza, F., 2018. Prediction of the fundamental frequencies and modal shapes of historic masonry towers by empirical equations based on experimental data. Engineering Structures, 156, pp.433-442. Available at: [https://doi.org/10.1016/j.engstruct.2017.11.061]
[16] Bartoli, G., Betti, M., Marra, A.M. and Monchetti, S., 2017. Semiempirical Formulations for Estimating the Main Frequency of Slender Masonry Towers. Journal of Performance of Constructed Facilities, 31(4), p.04017025. Available at: [https://doi.org/10.1061/(ASCE)CF.1943-5509.0001017]
[17] Ramos, L.F., Marques, L., Lourenço, P.B., De Roeck, G., Campos-Costa, A. and Roque, J., 2010. Monitoring historical masonry structures with operational modal analysis: two case studies. Mechanical systems and signal processing24(5), pp.1291-1305. Available at: [https://doi.org/10.1016/j.ymssp.2010.01.011]
[18] Bartoli, G., Betti, M. and Giordano, S., 2013. In situ static and dynamic investigations on the “Torre Grossa” masonry tower. Engineering Structures52, pp.718-733. Available at: [https://doi.org/10.1016/j.engstruct.2013.01.030]
[19] Russo, G., Bergamo, O., Damiani, L. and Lugato, D., 2010. Experimental analysis of the “Saint Andrea” Masonry Bell Tower in Venice. A new method for the determination of “Tower Global Young’s Modulus E”. Engineering structures32(2), pp.353-360. Available at: [https://doi.org/10.1016/j.engstruct.2009.08.002]
[20] Bennati, S., Nardini, L. and Salvatore, W., 2005. Dynamic behavior of a medieval masonry bell tower. Part I: Experimental measurements and modeling of bell’s dynamic actions. Journal of structural engineering131(11), pp.1647-1655. Available at: [https://doi.org/10.1061/(ASCE)0733-9445(2005)131:11(1647)]
[21] Júlio, E.N.B.S., da Silva Rebelo, C.A. and Dias-da, D.A.S.G., 2008. Structural assessment of the tower of the University of Coimbra by modal identification. Engineering Structures30(12), pp.3468-3477. Available at: [https://doi.org /10.1016/j.engstruct.2008.06.001]
[22] Altunişik, A.C., 2011. Dynamic response of masonry minarets strengthened with Fiber Reinforced Polymer (FRP) composites. Natural Hazards and Earth System Sciences11(7), 2011-2019. Available at: [https://doi.org/10.5194 /nhess-11-2011-2011]
[23] Dogangun, A., Acar, R., Sezen, H. and Livaoglu, R., 2008. Investigation of dynamic response of masonry minaret structures. Bulletin of Earthquake Engineering6(3), pp.505-517. Available at: [https://doi.org/10.1007/s10518-008-9066-5]
[24] Colapietro, D., Fiore, A., Netti, A., Fatiguso, F., Marano, G.C., De Fino, M., Cascella, D. and Ancona, A., 2013. Dynamic identification and evaluation of the seismic safety of a masonry bell tower in the south of Italy. In Proc., 4th ECCOMAS Thematic Conf. on Computational Methods in Structural Dynamic and Earthquake Engineering (COMPDYN 2013), Kos Island, Greece. Available at: [https://www.researchgate.net/publication/309200820_Dynamic_identification_and _evaluation_of_the_seismic_safety_of_a_masonry_bell_tower_in_the_south_of_Italy]
[25] Valente, M. and Milani, G., 2016. Seismic assessment of historical masonry towers by means of simplified approaches and standard FEM. Construction and Building Materials108, pp.74-104. Available at: [https://doi.org/10.1016 /j.conbuildmat.2016.01.025]
[26] Lancellotta, R. and Sabia, D., 2015. Identification technique for soil-structure analysis of the Ghirlandina tower. International Journal of Architectural Heritage9(4), pp.391-407. Available at: [https://doi.org/10.1080/15583058 .2013.793438]
[27] Gentile, C. and Saisi, A., 2013. Operational modal testing of historic structures at different levels of excitation. Construction and Building Materials48, pp.1273-1285. Available at: [https://doi.org/10.1016/j.conbuildma t.2013.01.013]
[28] Bassoli, E., Vincenzi, L., Bovo, M. and Mazzotti, C., 2015, July. Dynamic identification of an ancient masonry bell tower using a MEMS-based acquisition system. In Environmental, Energy and Structural Monitoring Systems (EESMS), 2015 IEEE Workshop on (pp. 226-231). IEEE. Available at: [10.1109/EESMS.2015.7175882]
[29] Cosenza, E. and Iervolino, I., 2007. Case study: seismic retrofitting of a medieval bell tower with FRP. Journal of Composites for Construction11(3), pp.319-327. Available at:  [https://doi.org/10.1061/(ASCE)1090-0268(2007)11 :3(319)]
[30] Bonato, P., Ceravolo, R., De Stefano, A. and Molinari, F., 2000. Cross-time frequency techniques for the identification of masonry buildings. Mechanical Systems and Signal Processing14(1), pp.91-109. Available at:  [https://doi.org/10. 1006/mssp.1999.1273]
[31] Ceroni, F., Pecce, M. and Manfredi, G., 2009. Seismic Assessment of the Bell Tower of Santa Maria del Carmine: problems and solutions. Journal of Earthquake Engineering14(1), pp.30-56. Available at: [https://doi.org/10.1080/1363 2460902988968]
[32] Bayraktar, A., Türker, T., Sevım, B., Altunişik, A.C. and Yildirim, F., 2009. Modal parameter identification of Hagia Sophia bell-tower via ambient vibration test. Journal of Nondestructive Evaluation28(1), pp.37-47. Available at: [https://doi.org/10.1007/s10921-009-0045-9]
[33] Carone, A.S., Foti, D., Giannoccaro, N.I. and Nobile, R., 2013, June. Non-destructive characterization and dynamic identification of an historical bell tower. In Proceedings of the International Conference on Integrity, Reliability and Failure Mechanical Systems. Available at: [http://campaners.com/pdf/pdf74.pdf]
[34] Ceriotti, M., Mottola, L., Picco, G.P., Murphy, A.L., Guna, S., Corra, M., Pozzi, M., Zonta, D. and Zanon, P., 2009, April. Monitoring heritage buildings with wireless sensor networks: The Torre Aquila deployment. In Proceedings of the 2009 International Conference on Information Processing in Sensor Networks (pp. 277-288). IEEE Computer Society. Available at: [https://dl.acm.org/citation.cfm?id=1602191]
[35] Ivorra, S. and Cervera, J.R., 2001. Analysis of the dynamic actions when bells are swinging on the bell tower of Bonreposi Mirambell Church (Valencia, Spain). In IProc. of the 3rd international seminar of historical constructions (Vol. 413, p. 19). University of Minho Guimarães. Available at:  [http://www.hms.civil.uminho.pt/sahc/2001/page%20413-420%20_33 _.pdf]
[36] Casciati, S. and Al-Saleh, R., 2010. Dynamic behavior of a masonry civic belfry under operational conditions. Acta mechanica215(1-4), pp.211-224. Available at:  [https://doi.org/10.1007/s00707-010-0343-4]
[37] Ivorra, S. and Pallarés, F.J., 2006. Dynamic investigations on a masonry bell tower. Engineering structures28(5), pp.660-667. Available at: [https://doi.org/10.1016/j.engstruct.2005.09.019]
[38] Kohan, P.H., Nallim, L.G. and Gea, S.B., 2011. Dynamic characterization of beam type structures: Analytical, numerical and experimental applications. Applied Acoustics72(12), pp.975-981. Available at: [https://doi.org/10.1016/j. apacoust.2011.06.007]
[39] Diaferio M, Foti D, Giannoccaro NI, Vitti M., 2013. On the use of modal analysis and ground penetrating radar test for the physical parameter identification of an historical bell tower. InProceedings of the Vienna Congress on Recent Advances in Earthquake Engineering and structural Dynamics (pp. 28-30).
[40] Gentile, C. and Saisi, A., 2007. Ambient vibration testing of historic masonry towers for structural identification and damage assessment. Construction and Building Materials21(6), pp.1311-1321. Available at: [https://doi.org/10.1016/j .conbuildmat.2006.01.007]
[41] Zonta, D., Zanon, P., Molinari, M., Toffaletti, S., Anese, G.A. and Busetto, A., 2004, January. Aggiornamento della vulnerabilità sismica della Torre Civica di Portogruaro basato su misure vibrazionali. In XI Congresso Nazionale “L’ingegneria Sismica in Italia, Genova (pp. 25-29). Available at: [https://www.researchgate.net/profile/Daniele _Zonta/publication/267681283_Aggiornamento_della_vulnerabilita_sismica_della_Torre_Civica_di_Portogruaro_basato_su_misure_vibrazionali/links/555e15d508ae9963a11410ee/Aggiornamento-della-vulnerabilita-sismica-della-Torre-Civica-di-Portogruaro-basato-su-misure-vibrazionali.pdf]
[42] Rainieri, C., and Fabbrocino, G., 2012. “Estimating the elastic period of masonry towers.” Proc., SEM IMAC 30th Conf., Society for Experimental Mechanics, Jacksonville, FL.
[43] Abruzzese, D. and Vari, A., 2004, November. Seismic resistance of masonry towers. In Proceedings of the 4th International Seminar on Structural Analysis of Historical Constructions, Padova (pp. 451-460).
[44] Castellacci, I., Spinelli, P., Vignoli, A., and Galano, L., 2007. “Caratter-izzazione dinamica del campanile della pieve di San Cresci a Macioli nei pressi di Pratolino, comune di Vaglia, e progetto di miglioramento sismico.” Bollettino degli Ingegneri, 10, 21–23 (in Italian).
[45] Casarin, F., Modena, C. and Simonato, E., 2009. Dynamic identification of the St. Martin bell-tower of Burano, Venice. In Proc., 3rd Int. Operational Modal Analysis Conf. (IOMAC’09), Curran Associate, Red Hook, NY. Available at: [http://iomac.eu/iomac/2009/pdf/475-482.pdf]