نمایش احتمالاتی آسیب‌های ناشی از انفجار داخلی برسازه‌های بتن مسلح

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه مهندسی زلزله، دانشکده عمران و محیط زیست، دانشگاه صنعتی شیراز، شیراز، ایران

2 دانشگاه امام حسین (ع)

چکیده

پارکینگ ساختمان‌ها یکی از نقاط مستعد انفجارهای تروریستی است. با توجه به گسترش حملات تروریستی برسازه‌ها در سال‌های اخیر، شناخت رفتار ساختمان‌های موجود در برابر انفجار و یافتن راه‌کاری مناسب جهت کاهش خسارات ناشی از آن از اهمیت ویژه‌ای برخوردار است. در این پژوهش احتمال خرابی یک ساختمان 10 طبقه بتن مسلح تحت انفجار ناشی از خودروی بمب‌گذاری‌شده به‌صورت تصادفی در طبقه همکف مورد ارزیابی قرارگرفته است. برای این ارزیابی از تحلیل قابلیت اعتماد سازه ساختمان به روش شبیه‌سازی مونت‌کارلو و بر پایه نتایج به‌دست‌آمده از تحلیل دینامیکی مدل اجزاء محدود در نرم‌افزار LS-DYNA استفاده‌شده است. متغیرهای تصادفی در نظر گرفته‌شده شامل موقعیت رخداد انفجار، تاریخچه بارگذاری انفجار، بارهای ثقلی وارد برسازه و ضخامت دال‌ها می‌باشند. جهت بررسی اثر موقعیت رخداد انفجار بر احتمال خرابی، پلان ساختمان به سه ناحیه مرکز، کنار و گوشه تقسیم‌شده، سپس با تولید انفجار به‌صورت تصادفی در هر یک از نواحی، احتمال رخداد سطوح مختلف خسارت به ساختمان محاسبه‌شده است. بر اساس نتایج به‌دست‌آمده احتمال خرابی در هنگام رخداد انفجار در ناحیه مرکزی پلان به مقدار چشم‌گیری بیشتر از سایر نواحی است. نهایتاً با تقویت ستون‌های مرکزی مشاهده شد که احتمال رخداد خسارت سنگین (خسارت بیش از 55 درصد) برای انفجارهایی با مقدار ماده منفجره 600، 750 و900 کیلوگرم TNT به ترتیب به میزان 52، 56 و 77 درصد کاهش یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Stochastic Representation of Interior Explosion Damages to Reinforced Concrete Structures

نویسندگان [English]

  • Sina Malekpour 1
  • Mohammad Reza Moarefzadeh 2
1 Department of Civil and Environmental Engineering, Shiraz University of Technology, Shiraz, Iran
2 Imam Hossein University
چکیده [English]

Parking floors in buildings are of the most likely places for terrorist bombings. While terrorist attacks across the globe have increased remarkably in the last decades, it is important to recognize the behavior of existing structures against explosions and to find appropriate solutions to reduce the resulting damages. In this study, the failure probability of a 10-story reinforced concrete building subject to a vehicle bombing in random locations in the ground floor is evaluated. For this evaluation, reliability analysis of the building structure is conducted using a Monte Carlo simulation method and the results are obtained using a dynamic analysis of a finite element model and LS-DYNA software. The random variables considered herein are the location of the explosion, the time history of the blast loading, the gravity loads and the slab depth. In order to investigate the effect of the explosion location on the probability of failure, the building plan was first divided into three categories including the center, side and corner areas, then by randomly generating the explosion in each area, the probability of different level of damages to the building was calculated. Based on the results obtained in this study, the probability of failure in the central area of the plan is more significantly compared with those of the other areas. Finally, it is shown that by strengthening the central columns, the probability of heavy damages (damages greater than 55%) for blast loadings containing 600, 750 and 900 Kg TNT charge weights is reduced to 52%, 56% and 77%, respectively.

کلیدواژه‌ها [English]

  • Terrorist attacks
  • reinforced concrete building
  • Reliability analysis
  • Blast loading
  • LS-DYNA software
[1] Li, B. Nair, A. and Kai, Q. (2012). Residual axial capacity of reinforced concrete columns with simulated blast damage. Journal of Performance of Constructed Facilities. 26, 287-299.
[2] Nassr, A.A. Razaqpur, A.G. and Campidelli, M. (2017). Effect of initial blast response on RC beams failure modes. Nuclear Engineering and Design. 320, 437-451.
[3] Rong, H.-C. and Li, B. (2007). Probabilistic response evaluation for RC flexural members subjected to blast loadings. Structural safety. 29, 146-163.
[4]Nassr, A.A. Razaqpur, A.G. Tait, M.J. Campidelli, M. and Foo, S. (2013). Strength and stability of steel beam columns under blast load. International Journal of Impact Engineering. 55, 34-48.
[5] Al-Thairy, H. (2016). A modified single degree of freedom method for the analysis of building steel columns subjected to explosion induced blast load. International Journal of Impact Engineering. 94, 120-133.
[6] Shi, Y. Hao, H. and Li, Z.-X. (2008). Numerical derivation of pressure–impulse diagrams for prediction of RC column damage to blast loads. International Journal of Impact Engineering. 35, 1213-1227.
[7] Hadianfard, M.A. and Farahani, A. (2012). On the effect of steel columns cross sectional properties on the behaviours when subjected to blast loading. Structural Engineering and Mechanics. 44, 449-463.
[8] Hadianfard, M.A. Nemati, A. and Johari, A. (2016). Investigation of Steel Column Behavior with Different Cross Section under Blast Loading. Modares Civil Engineering journal. 16, 265-278.
[9] Luccioni, B. Ambrosini, R. and Danesi, R. (2004). Analysis of building collapse under blast loads. Engineering structures. 26, 63-71.
[10] Pouya, H. Hosseini, M. abdolreza sarvghad, m. and mohammad heydari Rasoul, A. (2018). Assesment Behaviour of the concrete flexural frame and shear wall Partially Buried system under Blast Loadings. Journal of Structural and Construction Engineering. 5, 55-70.
[11] Low, H.Y. and Hao, H. (2001). Reliability analysis of reinforced concrete slabs under explosive loading. Structural safety. 23, 157-178.
 [12] Hao, H. Stewart, M.G. Li, Z.-X. and Shi, Y. (2010). RC column failure probabilities to blast loads. International Journal of Protective Structures. 1, 571-591.
[13] Hao, H. Li, Z.-X. and Shi, Y. (2015). Reliability Analysis of RC Columns and Frame with FRP Strengthening Subjected to Explosive Loads. Journal of Performance of Constructed Facilities. 30, 04015017.
[14] Low, H.Y. and Hao, H. (2002). Reliability analysis of direct shear and flexural failure modes of RC slabs under explosive loading. Engineering Structures. 24, 189-198.
[15] Hadianfard, M.A. and Malekpour, S. (2017). Evaluation of Explosion Safe Distance of Steel Column Via Structural Reliability Analysis. Journal of Advanced Defence Science and Technology. 8, 349-359.
[16] Shi, Y. and Stewart, M.G. (2015). Damage and risk assessment for reinforced concrete wall panels subjected to explosive blast loading. International Journal of Impact Engineering. 85, 5-19.
[17] Shi, Y. and Stewart, M.G. (2015). Spatial reliability analysis of explosive blast load damage to reinforced concrete columns. Structural Safety. 53, 13-25.
[18] Stewart, M.G. (2017). Risk of Progressive Collapse of Buildings From Terrorist Attacks: Are the Benefits of Protection Worth the Cost? Journal of Performance of Constructed Facilities. 31, 04016093.
[19] Asprone, D. Jalayer, F. Prota, A. and Manfredi, G. (2010). Proposal of a probabilistic model for multi-hazard risk assessment of structures in seismic zones subjected to blast for the limit state of collapse. Structural Safety. 32, 25-34.
[20] Ding, Y. Song, X. and Zhu, H.-T. (2017). Probabilistic progressive collapse analysis of steel frame structures against blast loads. Engineering Structures. 147, 679-691.
[21] Kelliher, D. Sutton-Swaby, K. (2012). Stochastic representation of blast load damage in a reinforced concrete building. Structural Safety. 34, 407-417.
[22] Swaby, K. (2005). Nonlinear Structural Analysis for the Risk Assessment of Buildings Subject to Blast Loading. Degree of master. University college cork, Department of civil and environmental engineering.
[23] McSweeney, B.M. (2005). Structural Risk Assessment of Buildings Subject to Blast Loading Using Structural Reliability Analysis. Degree of master. University college cork, Department of civil and environmental engineering.
[24] Cowper, G.R. and Symonds, P.S. (1958). Strain Hardening and Strain Rate Effects in the Impact Loading of
Cantilever Beams
. Providence: Brown University, Applied Mathematics Report. p 28.
[25] US Department of Defense (DOD). (2008). Structures to Resist the Effects of Accidental Explosions, UFC 3-340-02,
Washington DC: NAVFAC P-397. 583-1000.
[26] Sideri, J. Mullen, C.L. Gerasimidis, S. and Deodatis, G. (2017). Distributed Column Damage Effect on Progressive Collapse Vulnerability in Steel Buildings Exposed to an External Blast Event. Journal of Performance of Constructed Facilities. 31, 04017077.
[27] Brode, H.L. (1955). Numerical solutions of spherical blast waves. Journal of Applied physics. 26, 766-775.
[28] Henrych, J. and Major, R. (1979). The dynamics of explosion and its use. Amsterdam: Elsevier, Vol. 569.
[29] Mills, C. (1987). The design of concrete structure to resist explosions and weapon effects. In:  Proceedings of the 1st Int Conference on concrete for hazard protections. Edinburgh,  61-73.
[30] Baker, W.E. Cox, P. Kulesz, J. Strehlow, R. and Westine, P. (2012). Explosion hazards and evaluation. Amsterdam: Elsevier, Vol. 5.
[31] Kingery, C.N. and Bulmash, G. (1984). Airblast parameters from TNT spherical air burst and hemispherical surface burst. US Army Armament and Development Center, Ballistic Research Laboratory.
[32] Hyde, D. (1992). User’s guide for microcomputer program CONWEP. Application of TM5-855-1. Fundamental of protective design for conventional weapons. Instructional Rep No SL-88 1.
[33] Krauthammer, T. (1999). Blast effects and related threats. Protective Technology Center, Penn State University.
[34] Smith, P.D. and Hetherington, J.G. (1994). Blast and ballistic loading of structures. Butterworth
Heinmann.
[35] FEMA 426. (2003). Reference Manual to Mitigate Potential Terrorist Attacks Against Buildings. Federal Emergency Management Agency.
[36] Kennett, M. Letvin, E. Chipley, M. and Ryan, T. (2005). FEMA 452-Risk Assessment. Federal Emergency Management Agency.
[37] Metropolis, N. and Ulam, S. (1949). The monte carlo method. Journal of the American statistical association. 44, 335-341.
[38] Hadianfard, M. A. Malekpour, S. and Momeni, M. (2018). Reliability analysis of H-section steel columns under blast loading. Structural Safety. 75, 45-56.