ارزیابی خواص مهندسی بتن خودتراکم حاوی آب مغناطیسی و زئولیت طبیعی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه عمران- دانشکده فنی-دانشگاه گیلان-رشت

2 دانشکده مهندسی عمران- دانشگاه سمنان- سمنان- ایران

چکیده

هدف از این مقاله، ارزیابی خواص مهندسی بتن خودتراکم حاوی آب مغناطیسی و درصدهای مختلف زئولیت طبیعی می‌باشد. بدین منظور رفتار بتن خودتراکم در حالت تازه توسط آزمایش‌های جریان اسلامپ، زمان جریان 50 سانتی‌متر(T50)، زمان عبور بتن از قیف V، نسبت انسداد در جعبه L و شاخص پایداری چشمی بررسی شده است. خصوصیات مکانیکی و دوام بتن سخت شده با تعیین مقاومت‌های‌ فشاری و کششی، مدول الاستیسیته و درصد جذب آب در سنین مختلف و تحت عمل‌آوری‌های مرطوب و خشک مورد ارزیابی قرار گرفته است. نتایج‌ حاصل از آزمایش‌های بتن تازه نشان داد که بکارگیری آب مغناطیسی و زئولیت طبیعی، موجب بهبود خواص رئولوژیکی و پایداری بتن خودتراکم می‌گردد. بنحوی که آب مغناطیسی قادر است جریان اسلامپ بتن را تا حدود 3 درصد افزایش و ویسکوزیته پلاستیک مخلوط را بدون جداشدگی سنگدانه‌ها تا 6 درصد کاهش دهد. همچنین حضور آب مغناطیسی و زئولیت می‌تواند خواص مکانیکی و دوام بتن خودتراکم را بهبود بخشد. بر این اساس، مقاومت‌ فشاری، مقاومت کششی و مدول الاستیسیته بتن خودتراکم حاوی آب مغناطیسی و 20 درصد زئولیت به ترتیب به میزان 42، 12 و 33 درصد در سن 90 روز افزایش یافت. همچنین در همین اختلاط، میزان جذب آب بتن حدود 48 درصد کاهش یافته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of engineering properties of self-compacting concrete incorporating magnetic water and natural zeolite

نویسندگان [English]

  • Rahmat Madandoust 1
  • Mohammad Hajforoush 2
1 Department of Civil Engineering, Faculty of Engineering, University of Guilan
2 Faculty of Civil Engineering, Semnan University
چکیده [English]

The main objective of this study was to assess engineering properties of self-compacting concrete (SCC) incorporating magnetic water and various percentages of natural zeolite. The fresh properties of SCC were investigated by means of slump flow, T50, V-funnel, L-box and visual stability index (VSI). At hardened state, mechanical properties and durability characteristics of concrete were evaluated by means of compressive and tensile strength tests, modulus of elasticity test and water absorption test at different ages under both wet and dry curing conditions. The results of fresh concrete indicated that magnetic water and natural zeolite in SCC can improve the rheological properties and stability of SCC where the magnetic water is able to increase the slump flow up to 3% and decrease plastic viscosity of concrete mixture up to 6% without aggregates segregation. In addition, the presence of magnetic water and natural zeolite improves mechanical properties and durability of SCC. According to this, compressive and tensile strengths and modulus of elasticity of SCC containing magnetic water and 20% natural zeolite were increased up to 42, 12 and 33 %, respectively, at the age of 90 days. In the same concrete mixture, the value of water absorption was decreased up to 48%.

کلیدواژه‌ها [English]

  • Magnetic Water
  • Self-Compacting Concrete (SCC)
  • Engineering Properties
  • Natural Zeolite
  • Curing Conditions
[1] Okamura, H., Ouchi, M. (2003). Self-Compacting Concrete. Journal of Advanced Concrete Technology, 1(1), 5-15.
[2] Okamura, H., (1997). Self-compacting high performance concrete. Concrete International, 19(7), 50-54.
[3] Self Consolidating Concrete. (2007), Reported by ACI Committee 237.
[4] De Schutter, G., peter, J., Bartos, M., Domone, p., Gibbs, J. (2008). Self-Compacting Concrete. Whittles publishing.
[5] Singh, S. and Naval, S. (2016). Effect of magnetic water on the engineering properties of self-compacting concrete using binary and ternary blends. International Journal for Science, Management and Technology. 9(1).
[6] Siva Konda Reddy, B. Ghorpade, V. G., Sudarsana Rao, H. (2014). Influence of Magnetic Water on Strength Properties of Concrete. Indian Journal of Science and Technology, 7(1), 14–18.
[7] Szczes, A., Chibowski, E., Holysz, P., Rafalski, P. (2011). Effect of static magnetic field on water at kinetic condition. Chemical Engineering and processing, 50(1), 124-127.
[8] Al-Qahtani, H. (1996). Efect of magnetic treatment on gulf seawater. Desalination, 107(1), 75-81.
 
[9] Lungader, M. (1995). Influence of magnetic field on the precipitation of some inorganic salts. Journal of Crystal Growth, 152(1), 94–100.
[10] Joshi, K. M., Kamat, P. V. (1996). Effect of magnetic field on the physical properties of water. Journal of the Indian Chemical Society, 43, 620-622.
[11] Gabrielli, C., Jaouhari, R., Maurin, G., Keddam, M. (2001). Magnetic Water Treatment for Scale Prevention. Water Research, 35(13), 3248-3259.
[12] Kronenberg, K., and Klaus, J. (1985). Experimental Evidence for Effects of Magnetic Fields on Moving Water. IEEE Transactions on Magnetics, 21(5), 2059 - 2061.
[13] Saddam, M. A. (2009). Effect of Magnetic Water on Engineering Properties of Concrete. Al-Rafidain Engineering, 17(1), 71-82.
[14] Fu, W., Wang, Z. B. (1994). The new technology of concrete engineering. Beijing. The Publishing House of Chinese Architectural Industry, 56–59.
[15] Chau, Z. J. (1996). The new construction method of concrete. Beijing. The Publishing House of Chinese Architectural Industry, 401–407.
[16] Tawfic, Y. R., Abdelmoez, W. (2013). The Influence of Water Magnetization on fresh and hardened concrete properties. International Journal of Civil Engineering and Technology (IJCIET), 4(6), 21-43.
[17] Afshin, H., Gholizadeh, M., Khorshidi, N. (2010). Improving Mechanical Properties of High Strength Concrete by Magnetic Water Technology. Scientia Iranica, 17(1), 74-79.
[18] Bhatath, S., Subraja, S., Kumar, P. A. (2016). Influence of magnetized water on concrete by replacing cement partially with copper slag. Journal of Chemical and Pharmaceutical Sciences 9(4).
[19] Su, N., Yeong Hwa Wu., Yo Mar, Ch. (2000). Effect of Magnetic Water on the Engineering Properties of Concrete Containing Granulated Blast Furnace Slag. Journal of Cement and Concrete Research, 30, 599 – 605.
[20] Su, N., Yeong Hwa, Wu., Yo Mar, Ch. (2003). Effect of Magnetic Field Treated Water on Mortar and Concrete Containing Fly Ash. Cement and Concrete Composites, 25(7), 681-688.
[21] Gholhaki, M., Kheyroddin, A., Hajforoush, M., Kazemi, M. (2018). An investigation on the fresh and hardened properties of self-compacting concrete incorporating magnetic water with various pozzolanic materials. Construction and Building Materials, 158, 173–180.
[22] Jain, A., Laad, A., Singh, K. Murari, K. (2017). Effect of magnetic water on properties of concrete. International Journal of Engineering Science and Computing, 5(7).
[23] Oner, A., Akyuz, S. (2007). An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cement and Concrete Composites, 29(6), 505–514.
[24] Yang, E. H., Yang, Y. Z., Li, V. C. (2007). Use of high volumes of fly ash to improve ECC mechanical properties and material greenness. ACI Material Journal, 104(6), 620–628.
[25] Valipour, M., Yekkalar, M., Shekarchi, M., Panahi,S. (2014). Environmental assessment of green concrete containing natural zeolite on the global warming index in marine environments. Journal of Cleaner Production, 65, 418-423.
[26] Nai-qian, F., Hsia-ming, Y., Li-Hong, Z. (1988). The strength effect of mineral admixture on cement concrete. Cement and concrete research, 18(3), 464-472.
[27] Dadsetan, S., Bai, J. (2017). Mechanical and microstructural properties of self-compacting concrete, blended with metakaolin, ground granulated blast furnace slag and fly ash. Construction and Building Materials, 146, 658–667.
 
[28] Ghods, A. (2014). A survey on the mechanical properties of magnetic self-compacting concrete containing nano silica. International Research Journal of Applied and Basic Sciences. 8(4), 413-418.
[29] Ahmadi, B., Shekarchi, M. (2010). Use of natural zeolite as a supplementary cementitious material. Cement and Concrete Composites, 32(2), 134-141.
 
[30] Ranjbar M. M., Madandoust R., Mousavi S. Y., Yosefi, S. (2013). Effects of natural zeolite on the fresh and hardened properties of self-compacted concrete, Construction and Building Materials. 47, 806–813.
[31] Chan, S. Y., Ji, X. (1999). Comparative study of the initial surface absorption and chloride diffusion of high performance zeolite, silica fume and PFA concretes. Cement and Concrete Composites, 21(4), 293-300.
 
[32] Valipour, M., Pargar, F., Shekarchi, M., Khani, S. (2013). Comparing a natural pozzolan, zeolite, to metakaolin and silica fume in terms of their effect on the durability characteristics of concrete: A laboratory study. Construction and Building Materials, 41, 879–888.
 
[33] Dousti, A., Rashetnia, R., Ahmadi, B., Shekarchi, M. (2013). Influence of exposure temperature on chloride diffusion in concretes incorporating silica fume or natural zeolite. Construction and Building Materials, 49, 393–399.
[34] Jalal, M., Pouladkhan, A., Harandi, O.F., Jafari, D. (2015). Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self-compacting concrete. Construction and Building Materials, 94, 90-104.
[35] EFNARC. (2005). The European guidelines for self-compacting concrete; specification production and use.
[36] ASTM Standard. (2004). Standard Specification for Chemical Admixtures for Concrete, ASTM Standard C494, ASTM International, West Conshohocken.
[37] Khayat, K. H., Bickley, J., Lessard, M. (2000). Performance of self-consolidating concrete for casting basement and foundation walls. ACI Material Journal, 97(1), 374–380.
[38] ASTM Standard. (2006). Standard test method for density, absorption, and voids in hardened concrete, ASTM Standard C642, ASTM International, West Conshohocken.
[39] ASTM Standard. (2004). Standard test method for splitting tensile strength of cylindrical concrete specimens, ASTM Standard C496, ASTM International, West Conshohocken.
 [40] ASTM Standard. (2002). Standard test method for static modulus of elasticity and poisson’s ratio of concrete in compression, ASTM Standard C469, ASTM International, West Conshohocken.
[41] Feng, N. Q., Li G. Z., Zang X. W. (1990). High-strength and flowing concrete with a zeolite mineral admixture. Cement Concrete Aggregates, 12(2), 61–69.
[42] Najimi, M., Sobhani, J., Ahmadi, B., Shekarchi, M. (2012). An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan. Construction and Building Materials, 35, 1023–1033.
[43] Barfield, M., Ghafoori, N. (2012). Air-entrained self-consolidating concrete: A study of admixture sources. Construction and Building Materials, 26(1), 490–496.
[44] Domone, P. L. (1997). A review of the hardened mechanical properties of self-compacting concrete. Cement and concrete composites, 29(1), 1–12.
[45] ACI Committee 318. (2005). Building Code Requirements for Reinforced Concrete (ACI 318–05) and Commentary (318R–05). American Concrete Institute, Farmington Hills.
[46] CEB-FIP. (1989). Diagnosis and assessment of concrete structures, state of the art report, CEB Bull, 192, 83–85.
[47] Vilanova, A., Gomez, J. F., Landsberger, G. A. (2011). Evaluation of the mechanical properties of self-compacting concrete using current estimating models estimating the modulus of elasticity, tensile strength and modulus of rupture of self - compacting concrete. Construction and Building Materials, 25(8), 3417–3426.