بررسی تأثیر نما بر پاسخ لرزه ای ساختمان

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری دانشگاه تهران

2 دانشکده معماری، پردیس هنرهای زیبا، دانشگاه تهران، تهران، ایران

3 دانشیار، پژوهشگاه بین المللی زلزله شناسی و مهندسی زلزله، تهران، ایران

چکیده

مشاهدات حاصل از زلزله های گذشته و مطالعات صورت گرفته توسط محققین مختلف نشان دهنده تاثیر نما در عملکرد لرزه ای سازه است. واقعیت این است که حتی اگر دیوارهای نما به عنوان اعضای غیر سازه ای نیز در نظر گرفته شوند، حین زلزله های قوی با قاب محصور کننده خود اندر کنش خواهند داشت که این اندرکنش موجب تغییر عملکرد سازه می گردد. این امر به خصوص در مورد قابهای بتنی اهمیت بیشتری پیدا می کند زیرا در این قابها خصوصیات مصالح و چینش نما در ارتفاع سازه، در نوع و مکانیزم گسیختگی قاب محصورکننده بسیار حائز اهمیت می باشد. در این مقاله قاب های 3، 5 و 9 طبقه با سیستم قاب خمشی معمولی با در نظر گرفتن دو نوع نمای معمول در ایران، یعنی سازه با نمای آجری و سنگ گرانیت توسط نرم افزار غیر خطی OpenSees مورد تحلیل قرار گرفته شده است. نتایج حاصل از آنالیز های صورت گرفته نشان می دهد که مصالح و چینش نما تاثیر قابل توجهی در سختی دیوار و نیز توزیع نیروی لرزه ای توسط المان ها و تغییر مکان جانبی سازه دارد. همچنین مشاهده می شود که با افزایش تعداد طبقات، اثرات نما در رفتار و عملکرد سازه رفته رفته کاهش می یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Influence of Adhered Masonry façade on Seismic Response of Buildings

نویسندگان [English]

  • Azam Jafari 1
  • Mahmood Golabchi 2
  • Mahmood Hosseini 3
1 Phd Student of University of Tehran
2 School of Architecture, College of Fine Arts, University of Tehran, Tehran, Iran
3 Associate professor, Structural Engineering Research Centre, International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran
چکیده [English]

Observations obtained in the course of previous earthquakes and studies performed by different researchers indicate the influence of cladding (façade) on seismic performance of structure. there is a dearth of technical knowledge in this field and no proper understanding exists of the actual response of different facade systems to earthquakes, and few studies, especially in Iran, have conducted about how building facade is damaged and about the performance analysis. As a matter of fact, even considering the cladding as non-structural members, those will interact with the encompassing frame during strong earthquakes, and these interactions can alter seismic performance of the structure. This is even more important when it comes to concrete frames wherein material properties and cladding arrangement along the structure height impose significant impacts on the failure mode and failure mechanism of the encompassing frame. In the present paper, three-, five-, and nine-story frames with conventional moment-resisting systems were analyzed using OpenSees Software by considering two typical façades in Iran, namely brick-finished and granite-finished structures. Results of the analysis show that, materials and cladding arrangement impose significant impact on the wall stiffness, distribution of seismic forces by elements, and lateral displacement of the structure. Moreover, it is observed that, with increasing the number of stories, effects of cladding on the structure behavior and performance decrease gradually.

کلیدواژه‌ها [English]

  • masonry façade
  • drift
  • stiffness
  • Seismic response
  • Infill walls
  •  

    • FEMA, No. 454. (2006). Designing for Earthquakes: A manual for architects. Washington D.C.: FEMA (Federal Emergency Management Agency) Publication, Building seismic safety Council.
    • Vaseghi, A. Jabarzadeh, M. and Sharif, V. (2003). The Report of Bam earthquake. [online] Tehran: International Institute of Earthquake Engineering and Seismology, Available at: iiees.ac.ir (Accessed 18.12.2016).
    • Faridi, M. and Sartipi, A. (2012). Preliminary Report for Ahar-Varzaghan earthquake. [online] Tehran: Geological Survey and Mineral Exploration of Iran, Available at: gsi.ir (Accessed 23.12.2016).
    • Klingner, R.E. Shing, P.B. McGinley, W.M. McLean, D.I. Okail, H. and Jo, S. (2010). Seismic performance tests of masonry and masonry veneer. ASTM Int. 7 (3).
    • Hosseini, M. (2004). On the Nonstructural Elements and Their Behavior in the Bam Earthquake of 26 December 2003. International Journal of Seismology and Earthquake Engineering (JSEE), Special Issue on Bam Earthquake, Tehran:169-196.
    • Booth, E. and Key, D. (2006). Earthquake design Practice for Buildings. Second Edition. London: Thomas Telford Publishing.
    • Hareer, R.W. (2007). Seismic Response of Building Façade System with Energy Absorbing Connection. unpublished doctoral dissertation, Queensland University of Technology.
    • Cohen, J.M. (1995). Seismic Performance of Cladding: Responsibility Revisited. Journal of performance of constructed facilities, 112( 4), 254-270.
    • Wolz, M. Hsu, C.C. and Goodno, B.J. (1992). Nonlinear Interaction between Building Structural Systems and Nonstructural Cladding Components. Proceedings of ATC-29 Seminar and Workshop on Seismic Design and Performance of Equipment and Nonstructural Elements in Buildings and Industrial Structures, Redwood City, Calif.: The Council, 329-340.
    • Smith, B.S. and Gaiotti, R. (1989). Interaction of Precast Concrete Cladding with a Story-height Frame Module. Proceedings of International Symposium on Architectural Precast Concrete Cladding – Its Contribution to Lateral Resistance of Buildings, Chicago, IL: PCI, 48-61.
    • Hunt, J. and Stojadinovic, B. (2008). Nonlinear Dynamic Model for Seismic Analysis of Nonstructural Cladding. Proceedings of the Fourteenth World Conference on Earthquake Engineering, Beijing, China.
    • Henry, R.M. and Roll, F. (1986). Cladding-Frame Interaction. Journal of Structural Engineering. 112( 4), 815-834.
    • Goodno, B.J. (1983). Cladding-Structure Interaction in Highrise Buildings. Georgia: Georgia Institute of Technology.
    • De Matteis, G. (2005). Effect of lightweight Cladding Panels on the Seismic Performance of Moment Resisting Steel Frames. Engineering Structure, 27, 1662-1676.
    • Desai, N. (2011). A Study of Behavior of Veneer Wall Systems in Medium Rise Buildings Under Seismic Loads. unpublished doctoral dissertation, University of Louisville, Kentucky.
    • Baird, A. Palermo, A. and Pampanin, S. (2012). Understanding cladding damage: A numerical investigation into a Christchurch earthquake case study. In seventeenth NZSEE Annual Conference. Christchurch: NZSEE Publication, paper No.121
    • Taucer, F. Spacone, E. and Filippou, F.C. (1991). A fiber beam-column element for seismic response analysis of reinforced concrete structures. Earthquake Engineering Research Center, College of Engineering, University of California.
    • Mazzoni, S. McKenna, S. Scott, M.H. Fenves, G.L. et al. (2006). OpenSees command language manual. [online] of Calif., Berkeley, Available at: http://opensees.berkeley.edu (Accessed 14.05.2018).
    • Tong, X. et al. (2005). Cyclic behavior of steel frame structures with composite reinforced concrete infill walls and partially-restrained connections. Journal of Constructional Steel Research, 61(4), 531-552.
    • Pradhan, P.M. (2012). Equivalent Strut Width for Partial Infilled frames. Journal of Civil Engineering Research, 2(5), 42-48.
    • FEMA, No. 273 (1997). NEHRP Guidelines for the seismic rehabilitation of buildings, Washington, D. C.: FEMA (Federal Emergency Management Agency) Publication, Building seismic safety council.
    • Corradi, M. Borri, A. and Vignoli, A. (2003). Experimental study on the determination of strength of masonry walls. Journal of Constructoin and Building Materials, 17, 325-337.
    • Hashemi, A. and Mosalam, K.M. (2007). Seismic evaluation of reinforced concrete buildings including effects of masonry infill walls. PEER Report No. 2007/100, [online] University of California, Berkeley, 268 pages. Available at: https://peer.berkeley.edu/sites/default/files/webr_peer7100_alidad_hashemi_and_khalid_m._mosalam.pdf (Accessed 14.05.2017).
    • Baird, A., Palermo, A., Pampanin, S. (2012), Experimental and numerical validation of seismic interaction between cladding systems and moment resisting frames. 15th WCEE Conference, Lisbon, Portugal.