مروری بر برخی از خواص مکانیکی و دوام بتن های خودتراکم توانمند

نوع مقاله : یادداشت پژوهشی

نویسندگان

1 دانشیار، گروه مهندسی عمران، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

2 گروه عمران، دانشگاه آزاد اسلامی واحد اهواز

چکیده

یکی از مشکلات بتن‌ریزی که بر مقاومت، دوام و کیفیت ظاهری بتن سخت‌شده تأثیرگذار است، تراکم بتن می‌باشد. ارتعاش، عملی است که با صدای زیاد همراه است و نیاز به کارگران آموزش‌دیده دارد و عدم انجام صحیح آن باعث مشکلات بسیاری می‌گردد. برای غلبه بر این مشکل، اقدام به توسعه بتن خودتراکم گردید. این بتن با استفاده از ریزدانه بیش‌تر و لزجت خمیری فراوان، بدون نیاز به ارتعاش و جداشدگی اجزاء آن و آب‌انداختگی، تمام ابعاد قالب را پر کرده و جریان می‌یابد. از موضوعات مورد توجه طی سالیان دراز در فن‌آوری بتن، مقاومت و دوام بوده است. برای داشتن خودتراکمی و همین‌طور مقاومت و دوام بالا، بتن خودتراکم توانمند ایجاد گردیده است. رسیدن به خودتراکمی، نیازمند استفاده از مقادیر زیاد مواد پودری است که برخی از این مواد فعال قابلیت جایگزینی بخشی از سیمان را داشته و جایگزینی آن‌ها گامی در راستای توسعه پایدار نیز می‌باشد. هم‌چنین با استفاده از مواد پودری، چگالی تراکم مصالح بتن افزایش یافته و منجر به بهبود مقاومت و دوام آن می‌گردد. از طرف دیگر استفاده از مقادیر زیاد مواد پودری نیاز به آب اختلاط را افزایش داده و احتمال جمع‌شدگی خمیری را بالا می‌برد. لذا لازم است تمام موارد برای ارتقاء عملکرد بتن منظور شوند تا بتن توانمند طراحی و ساخته شود. بنابراین، در این پژوهش مروری بر مطالعات پیشین در زمینه ماهیت، خواص مکانیکی و دوام بتن خودتراکم توانمند صورت گرفته و حدود 90 مقاله پراستناد با تمرکز بر اهداف و نتایج به دست آمده، بررسی شده‌اند. نتایج پژوهش‌های قبلی نشان می‌دهند که با استفاده از بتن خود‌تراکم، می‌توان به بتنی با مقاومت مشابه بتن‌های معمولی دست یافت و با کاهش نسبت آب به مواد سیمانی و هم‌چنین استفاده از مواد پوزولانی، نه تنها مقاومت بلکه خواص دوامی بتن نیز ارتقاء یافته و بتن خودتراکم توانمند حاصل می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A review on some of mechanical properties and durability of high- performance self- compacting concretes

نویسندگان [English]

  • Fathollah Sajedi 1
  • Milad Orak 2
1 Associate Professor, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
2 IAU of Ahvaz, Department of Civil Engineering
چکیده [English]

Concrete density is always a problem that occurs during concrete and it affects the strength, durability and apparent qualities of hardened concrete. Vibration is a practical thing that comes with a lot of noise and requires trained workers, and failure to do so will cause many problems. To overcome this problem, the development of self-compacting concrete has begun. This concrete, fills all the dimensions of the mould and is flowing through the use of more fine-grained and plastic shrinkage, without the need for vibration, without any parts being detached. The topics that have been considered for many years in concrete technology have been resilient and durable. For concrete having self-compacting and high resistance and durability, high- performance self-compacting concrete (HPSCC) has been created. The achievement of self-condensation requires the use of a large amount of powdered material, some of which are capable of replacing part of the cement, and replacing them is a step towards sustainable development. Also, using powder materials, the density of concrete aggregates increases and leads to improved strength and durability. The use of large quantities of powdered materials increases the need for mixing water and the likelihood of plastic shrinkage. Therefore, it is necessary to consider all items to enhance concrete performance, so that HPC can be designed and constructed. Therefore, in this research, a review of previous studies on the nature, mechanical properties and durability of highly capable HPSCC’s has been carried out and about 90 high citation articles have been considered, focusing on goals and results. The results of previous studies have shown that using SCC, concrete with similar strength of conventional concrete can be obtained. By reducing the proportion of water to cementicious materials, as well as using pozzolans, not only resistance but also concrete properties are enhanced and HPSCC is obtained.

کلیدواژه‌ها [English]

  • High- performance self-compacting concrete (HPSCC)
  • Pozzolan
  • Supplementary cementing materials (SCM’s)
  • Mechanical properties
  • Durability
  • Compressive strength
  • Packing density
[1] Mawo N. S., Onchiri R. O., Shitote S. M., (2017). Performance of self-compacting concrete made with hydraulic lime as filler. Journal of Civil Engineering and Construction Technology, Vol. 8, No. 3, pp. 20-25.
[2] Razavi A., Abdelzadeh S. (1393). Self-compacting concrete (SCC). The 15th National Students Conference, Urmia University, Shahrivar 1393.
[3] Ozawa K., Maekawa K., Kunishima M., Okamura, H., (1989). Development of high performance concrete based on the durability design of concrete structures. Proceedings of the 2nd East-Asia and Pacific Conference on Structural Engineering and Construction, Vol. 1, pp. 445-450.
[4] Okamura H., Ouchi M., (2003). Self-Compacting concrete. Journal of advanced concrete technology, Vol. 1, No. 1, pp. 5-15.
[5] Ahmad S., Hakeem I., Maslehuddin M., (2014). Development of UHPC Mixtures Utilizing Natural and Industrial Waste Materials as Partial Replacements of Silica Fume and Sand. The Scientific World Journal, Volume 2014, Article ID 713531.
[6] Bakhtiari S., Allah Verdi A., Ramezanianpour A. A., Peshizkar, T., Raeis Ghasemi M., (2011). A review of the composition and some properties of self-compacting concrete. Iranian Chemical Engineering Journal, tenth year, number fifty sixth.
[7] Qodousi, P., Ramezanianpour A. A., Shokrchizada M., Tadayon, M., Perehizkar T., Shirzadi Javid A. A., Raeis Qasemi A. M., (1393). Self-consolidating concrete. Publication of Roads Research Center, Housing and Urbanization, Tehran, Iran.
[8] Abbasi Rashtabadi M., Ranjir M. M., Madondost R., (1396). Investigating the Effect of Using Glass Powders and Metakaolin on the Properties of Self-Compacting Concrete. Concrete Research Journal. Tenth year, the first number. Spring 96. pp. 75-90.
[9] Ahmadi S. A., Havaei, A.A., (1393). The need to know more about self-compacting concrete and its effects on the economics of designs. First National Engineering Congress for Construction and Evaluation of Civil Engineering Projects, Gorgan, Ordibehesht 1393. 
[10] kamal M.M., Safan M. A., Bashandi A. A., Khalil A. M., (2018). Experimental investigation on the behavior of normal strength and high strength self-curing self-compacting concrete. Journal of Building Engineering. Vol. 16, No. 3, pp. 79-93.
[11] Niewiadomski P., Hola J., Cwircen A., (2018). Study on properties of self-compacting concrete modified with nanoparticles. Civil and Mechanical Engineering. Vol. 18, No. 3, pp. 877-886.
[12] Ghezal A, Assaf G., (2015). Restrained Shrinkage Cracking of Self-Consolidating Concrete. Science and Engineering of Composite Materials, Vol. 27, No. 10, pp. 233-241.
[13] Zekong C., Mao Y., (2015). The Research on Process and Application of Self-Compacting Concrete. International Journal of Engineering Research and Applications. Vol. 5, No. 8, pp. 12-18.
[14] Le H. T., Müller M., Siewert K., Ludwig H. M., (2015). The mix design for self-compacting high performance concrete containing various mineral admixtures. Materials and Design, Vol. 72, No. 5, pp. 51-62.
[15] Kwan A. K. H., Li L.G., (2014). Packing density of concrete mix under dry and wet conditions. Powder Technology, Vol. 253, No. 2, pp. 514–521.
[16] Long G., Gao Y., Xie Y., (2015). Designing more sustainable and greener self-compacting concrete. Construction and Building Materials, Vol. 84, No.8, pp. 301-306.
[17] Matus A. M., Maia L., Nunes S., Milheiro-Oliveira P., (2018). Design of self-compacting high-performance concrete: Study of mortar phase. Construction and Building Materials, Vol. 167 No.6, pp. 617–630.
[18] Koehler, E.P., (2007). Aggregates in self-consolidating concrete. Aggregates Foundation for Technology, Research, and Education (AFTRE), March 2007, The University of Texas at Austin.
[19] Bronjian J., Lotfi Omran A., Jalilian S., Nuri Pahlavanlou H., (1394). The effect of water-to-cement ratio on the maximum mechanical capacity of self-compacting concrete. Second International Congress on Structural Engineering, Architecture and Sustainable Development, Tabriz, Iran.
[20] Liber N. A., Khshnazar R., Shekarchi M., (2010). Relationship between fluidity and stability of self-consolidating mortar incorporating chemical and mineral admixtures. Construcation and Bulding Materials. Vol. 24, No. 1, pp. 1262-1271.
[21] Benchaa B., Kadri, E., Azzouz, L., Kenai S., (2012). Properties of self-compacting mortar made with various types of sand. Cement & Concrete Composites, Vol 34, No. 2, pp. 1167-1173.
[22] Gritsada S., Natt M., (2014). Utilization of high volumes of unprocessed lignite-coal fly ash and rice husk ash in self-consolidating concrete. Journal of Cleaner Production, Vol. 78, No 5, pp. 184-194.
[23] Khalou A., Allah, Khodaverdi Zanjan. M. M., Hosseini P. (1389). Investigation of self-compacting concrete using coarse aggregates recycled. Concrete Research Journal. Summer 1389, Year 3, Number 1, pp. 9-20.
[24] DIN 1045 “Beton und Stahlbeton”. Beton Verlag GMBH. Koln. 1988.
[25] Dinakar P., Manu S.N., (2014). Concrete mix design for high strength self-compacting concrete using metakaolin. Materials and Design, Vol. 60, No. 8, pp. 661-668.
[26] Ardalan R., Joshaghani A., Hootan R., (2017). Workability retention and compressive strength of self-compacting concrete incorporating pumice powder and silica fume. Construction and Building Materials. Vol. 134, No. 3, pp. 116-122.
[27] Qodusi P., Shirzadi Javid A. A., Lotfi M. (1395). The effect of the amount and several types of mineral additives on the changes in the yield stress and plastic viscosity of self-compacting concrete. Amir Kabir Scientific-Journal of Civil and Environmental Engineering, Vol. 48, No. 3, pp. 249-259.
[28] Jalal M., Pouladkhan A., Fasihi Harandi O., Jafari D., (2015). Comparative study on effects of class F fly ash, nano silica and silica fume on properties of high performance self-compacting concrete. Construction and Building Materials, Vol. 94, No. 9, pp.90-104.
[29] Mahdikhani M., Ramezanianpour A. A., (2015). New methods development for evaluation rheological properties of self-consolidating mortars. Construction and Building Materials, Vol. 75, No. 1, pp. 136-143.
[30] Bui V, Montgomery D., (1999). Mixture proportioning method for self-compacting high performance concrete with minimum paste volume. Proceedings of the first international RILEM symposium on self-compacting concrete, Stockholm, Sweden, RILEM Publications Cachan, France, pp. 373–396.
[31] Wang X., Wang K., Taylor P., Morcous G., (2014). Assessing particle packing based self-consolidating concrete mix design method. Construction and Building Materials, Vol. 70, No. 11, pp. 439–452.
[32] Mehdipour I., Khayat K. H., (2018). Understanding the role of particle packing characteristics in rheophysical properties of cementitious suspensions: A literature review. Construction and Building Materials, Vol. 161, No. 2, pp. 340–353.
[33] Reisi M., Mostofinejad D., Ramezanianpour A. A., (2017). Computer simulation-based method to predict packing density of aggregates mixture. Advanced Powder Technology, Vol. 29, No. 2, pp. 386-398.
[34] Xie X.J., Liu B.J., Yin J., Zhou S.Q., (2002). Optimum mix parameters of high-strength self-compacting concrete with ultra pulverized fly ash. Cement and Concrete Research, Vol. 32, No.3, pp. 477–480.
[35] Bakhtiari S., Allah Verdi A., Perehizkar T., Raeis Ghasemi M., (2009). Review of mixing designs and properties of self-compacting concretes. Third International Conference on Concrete and Development, Building and Housing Research Center, Tehran, Iran, pp. 7-9, Ordibehesht 1388.
[36] Kwan A. K. H., Wong H. H. C., (2008). Packing density of cementitious materials: Part 2 —packing and flow of OPC + PFA + CSF. Springer Netherlands, 41 (4) (2008) 773–784.
[37] Kwan A. K. H., Ng P. L., Huen K. Y., (2014). Effects of fines content on packing density of fine aggregate in concrete. Construction and Building Materials, Vol. 61, No. 62, pp. 70–277.
[38] Mohammad Pour Nikbin A., Islami M., (1387). A review on the mechanical properties of conventional and lightweight concretes. Fourth National Congress on Civil Engineering, University of Tehran, Ordibehesht 1387.
[39] Nematzadeh M., Naghipour M., (2012). Compressive strength and modulus of elasticity of freshly compressed concrete. Construction and Building Materials, Vol. 34, No. 4, pp. 476–485.
[40] Özel C., (2011). Prediction of compressive strength of concrete from volume ratio and Bingham parameters using adaptive neuro-fuzzy inference system (ANFIS) and data mining. International Journal of Physical Sciences, Vol. 6, No. 31, pp. 7078-7094.
[41] Mazloom, M, Resistance and modulus of elasticity in high-strength concretes containing microsilica, First National Engineering Congress of Tehran, Iran, Ordibehesht 1383.
[42] Vakhshouri B., Nejadi S., (2017). Prediction of compressive strength of self-compacting concrete by ANFIS models. Neurocomputing, Vol. 280, No. 3, pp. 13-22.
[43] Dinakar P., Prasanna Sethy K., Sahoo U. C., (2013). Design of self-compacting concrete with ground granulated blast furnace slag.  Materials and Design, Vol. 43, No.1, pp. 161–169.
[44] Sankaranarayannan S., Jagadesan J., (2016). Comparison of high performance fly ash concrete using nano silica fume on different mixes. Circuits and Systems, Vol. 7, No. 8, pp. 1259-1267.
[45] Alsalman A., Dang C., Hale W., (2017). Development of ultra-High performance concrete with locally available materials. Construction and building materials, Vol. 133, No. 1, pp. 135-142.
[46] Mohammadi Golafshani E., Ashour A., (2016). Prediction of self-compacting concrete elastic modulus using two symbolic regression techniques. Automation in Construction, Vol. 64, No. 4, pp. 7–19.
[47] ACI 318 – 95. Building Code Requirements for Structural Concrete (ACI 318-95).
[48] ACI 363.2R-98. Guide to Quality Control and Testing of High-Strength Concrete.
[49] CEB SPECIFICATION. AERIAL BUNDLE CONDUCTORS - 33 kV.138-1: 2015
[50] NS 3475:2004. Prosjektering av murkonstruksjoner - Beregnings- og konstruksjonsregler.
[51] Demir F., (2005). A new way of prediction elastic modulus of normal and high strength concrete—fuzzy logic. Cement and Concrete Research, Vol. 35, No. 8, pp. 1531– 1538.
[52] Samimi K., Kamali-Bernard S., Maghsoudi A.A., Maghsoudi M., (2016). The influence of metakaolin and natural zeolite on the rheology, engineering and durability properties of high strength self-compacting concrete at early age. 2nd International Conference Sustainability ICCS16. Spain, Madrid, 13-15 June 2016.
[53] Demir F., (2008). Prediction of elastic modulus of normal and high strength concrete by artificial neural networks. Construction and Building Materials, Vol. 22, No. 7, pp. 1428–1435.
[54] Gonzalez-Taboada I., Gonzalez-Fonteboa B., Perez-Ordonez J. L., Eiras-Lopez J., (2017). Prediction of self-compacting recycled concrete mechanical properties using vibrated recycled concrete experience. Construction and Building Materials, Vol. 131, No. 1, pp. 641-654.
[55] Wu L., Farzadnia N., Shi C., Zhang Z., Wang H., (2017). Autogenous shrinkage of high performance concrete: A review. Journal of construction and building Materials, Vol. 149, pp. 62-75.
[56] Qodousi P., Shirzadi Javid A. A., (1391). The effect of the rebar as a constraint against the shrinkage and platic settlement of repaired self-compacting concrete. Concrete Research Journal, Vol. 5, No. 1, Spring and Summer 1391, pp. 54-45.
[57] Abbasnia R., Ghoddousi P., Ahmadi J., (2005). Prediction of restrained shrinkage based on restraint factors in patching repair mortar. Journal of Cement and Concrete Research, vol. 35, No. 10, pp. 1909-1913.
[58] Yasumoto A., Edamatsu Y., Mizukoshi M., Nagaoka S., (1998). A Study on the Shrinkage Crack Resistance of Self-Compacting Concrete. ACI Materials Journal, 1998: pp. 651-670.
[59] Edamatsu, Y., Nagaoka, S., Yasumoto, M., (1997). Method for Estimating Autogenous Shrinkage of Self-Compacting Concrete. Proceedings of the 52nd Annual Conference of the Japan Society of Civil Engineers, Vol. 1997, No. 6, pp. 838-839.
[60] Akkaya Y., Chengsheng O., Surendra P. S., (2007). Effect of supplementary cementitious materials on shrinkage and crack development in concrete. Cement & Concrete Composites, Vol. 29, No. 1, pp. 117-123.
[61] Khatib J. M., (2008). Performance of self-compacting concrete containing fly ash. Construction and Building Materials, Vol. 22, No. 9, pp. 1963-1971.
[62] Toubat S. A., Junaid M. T., Leblouba M., Badran D., (2017). Effectiveness of fly ash on the restrained shrinkage cracking resistance of self-compacting concrete. Cement and Concrete Composites, Vol. 79, No.4, pp. 9-20.
[63] ASTM C1581. "Standard Test Method for Determining Age at Cracking and Induced 427 Tensile Stress Characteristics of Mortar and Concrete under Restrained Shrinkage." 2004.
[64] Standard Practice for Estimating the Crack Tendency of Concrete. AASHTO Designation PP-34-89.
[65] Jason W., Akhtar H., (2006). The role of specimen geometry and boundry conditions on stress development and cracking in the restrained ring test. Cement and Concrete Research, Vol. 36, No. 1, pp. 189-199.
[66] Oliveira M., Bettencourt Riberio A., Gariido Branco F., (2017). Shrinkage of self-compacting concrete. Journal of Building Engineering, Vol. 9, No. 1, pp. 117–124.
[67] Kiani B., Sajedi S., Ghangomi A. H., Huang Q., Liang R. Y., (2017). Optimal adjustment of ACI formula for shrinkage of concrete containing pozzolans. Construction and Building Materials, Vol. 131, No. 1, pp. 485-495.
[68] Pelisser F., Vieira A., Bernardin A. M., (2018). Efficient self-compacting concrete with low cement consumption. Journal of Cleaner Production, Vol. 175, No.2, pp. 324-332.
[69] Juenger M.C.G., Siddique R., (2015). Recent advances in understanding the role of supplementary cementitious materials in concrete. Cement and Concrete Research, Vol. 78, part A, No. 12, pp. 71-80.
[70] Cassagnabere F., Escadeillas G., Mouret M., (2009). Study of the reactivity of cement/ metakaolin binders at early age for specific use in steam cured precast concrete. Construction and Building Materials, Vol. 23, No. 2, pp. 775-784.
[71] Sahmaran M., Yaman I.O., Tokyay M., (2009). Transport and mechanical properties of self-consolidating concrete with high volume fly ash. Cement and Concrete Composites, Vol. 31, No. 2, pp. 99-106.
[72] Long W. J., Gu Y., Liao J., Xing F., (2017). Sustainable design and ecological evaluation of low binder self-compacting concrete. Journal of Cleaner Production, Vol. 167, No. 11, pp. 317-325.
[73] Schneider M., Romer M., Tschudim M., Bolio H., (2011). Sustainable cement production: present and future. Cement and Concrete Research, Vol. 41, No. 7, pp. 642-650.
[74] Assem A.A., Hassan A. A., Lachemi M, Hossain M. A., (2012). Effect of metakaolin and silica fume on the durability of self-consolidating concretes, Cement and Concrete Composites, Vol. 34 No. 6, pp. 801-807.
[75] Kanellopoulos A., Petrou M. F., Ioannou I., (2012). Durability performance of self-compacting concrete. Construction and Building Materials, Vol. 37, No. 12, pp. 320-325.
[76] Celik K., Meral C., (2014). A Comparative study of self-consolidating concretes incorporating high-volume natural pozzolan or high-volume fly ash. Construction and Building Materials, Vol. 67, Part A, No. 9, pp. 14-19.
[77] Siad H., Lachemi M., Kamali-Bernard S., Sahmaran M., Hossain A., (2015). Assessment of the long-term performance of SCC incorporating different mineral admixtures in a magnesium sulphate environment. Construction and Building Materials, Vol. 80, No. 4, pp. 141-154.
[78] Irassar E. F., (2009). Sulfate attack on cementitious materials containing limestone filler – A review. Cement and Concrete Research, Vol.39, No. 3, pp. 241-254.
[79] Ozawa K., Meakawa K., Kunishima M., Okammura H., (1989). High performance concrete based on the durability design of concrete structures. Proceeding of the 2nd East Asia- Pacific conference on structural Engineering & construction, Chiang Mai, 11-13 Jan. 1989.
[80] Crammond N. J., Halliwell M. A. (1995). The thaumasite form of sulfate attack in concretes containing a source of carbonate ions — a microstructural overview. in: V.M. Malhotra (Ed.), 2nd CANMET/ACI Int. Symp. on Advances in Conc. Tech., ACI SP 154, USA, 1995, pp. 357–380.
[81] Trägård J., Kalinowski M., (2003). Investigation of the conditions for a thaumasite form of sulfate attack in SCC with limestone filler. International RILEM Symposium on Self-Compacting Concrete, 2003, RILEM, Publications 033.
[82] Ghavidl Shahraki M., Miri M., Rakhshani Mehr M. (1395). Experimental study of the effect of using zeolite and metakaolin on the durability and corrosion of rebar in self-compacting concrete. Journal of Civil and Environmental Engineering, Vol. 46, No. 1.
[83] Kavitha O.R., Shanthi V.M., Prince Arulraj G., Sivakumar V.R., (2016). Microstructural studies on eco-friendly and durable self-compacted concrete blended with metakaolin. Applied Clay Science, Vol. 124-125, No. 5, pp. 143-149.
[84] Kalinowski M., Trägård J., (2005). Thaumasite and gypsum formation in SCC with sulfate resistant cement exposed to a moderate sulfate concentration. 2nd North American Conference on the Design and Use of Self- Consolidating Concrete and 4th International RILEM Symposium on Self-Compacting Concrete, Chicago, USA, 2005, pp. 319–325.
[85] Ramezanianpour A.A., Zolfagharnasb A., Bahmanzadeh F., Pour Ebrahimi M., Hasanpour S., Bushehri R., Ramezanianpour A.M. (1394). Study of the performance of high- performance concrete against sulfuric acid attack. Seventh Annual National Concrete Conference of Iran, Tehran.
[86] Pelsser F., Vieira A., Bernardin A. M., (2018). Efficient self-compacting concrete with low cement consumption. Journal of Cleaner Production, Vol. 175, No. 2, pp. 324-332.
[87] Sandhu R. K., Siddique R., (2017). Influence of rice husk ash (RHA) on the properties of self-compacting concrete. Construction and Building Materials, Vol. 153, No. 10, pp. 751–764.
[88] Badogiannis E. G., Sfikas I. P., Voukia D. V., Trezos K. G., Tsivilis S. G., (2015). Durability of metakaolin self-compacting concrete. Construction and Building Materials, Vol. 82, No. 5, pp. 133-141.
[89] Omrane M., Kenai S., KadriE. H., Aït-Mokhtar A., (2017). Performance and Durability of Self Compacting Concrete using Recycled Concrete Aggregates and Natural Pozzolan. Journal of Cleaner Production, Vol. 165, No. 11, pp. 415-430.