اثر اندرکنش خاک و سازه بر ارزیابی عملکرد شاخص خرابی تجمعی انرژی در قاب های بتن مسلح

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار، دانشگاه سمنان، سمنان، ایران

2 دانشجوی کارشناسی ارشد مهندسی عمران، دانشگاه سمنان، سمنان، ایران

چکیده

در اکثر روش های متداول طراحی، خاک زیر سازه صلب فرض می شود در صورتی که در واقعیت صلب نیست. تا کنون مطالعات زیادی بر روی تاثیر اندرکنش بر پاسخ سازه صورت پذیرفته، ولی تاثیر این پدیده بر خرابی سازه چندان مورد توجه قرار نگرفته است. در این مطالعه به بررسی شاخص‏ خرابی غیر تجمعی کرزینگ که شاخص خرابی بر اساس انرژی می باشد، در سطوح شکل‏پذیری  هدف 3، 4 و 5 در قاب های خمشی بتنی 5، 7، 10، 12، 15، 18 و20 طبقه تحت 7 عدد شتابنگاشت پرداخته شده است. خاک زیر سازه نیز با استفاده از مفهوم مدل های مخروطی مدل شده اند. نتایج نشان می دهد که در قاب های کوتاه مرتبه که دارای لاغری کمی هستند عدم در نظر گرفتن اثر اندرکنش خاک و سازه در طراحی سازه ها در جهت اطمینان می باشد ولی با افزایش ارتفاع قاب ها (افزایش لاغری) به همراه افزایش شکل پذیری اثر اندرکنش خاک و سازه در طبقاتی موجب افزایش خرابی می گردد که این افزایش در نقاطی تا 14 درصد به خصوص در طبقات فوقانی پیش میرود که این موضوع اهمیت در نظر گرفتن اندرکنش خاک و سازه را در سازه های لاغر نشان می دهد. در خاک متوسط در اکثر موارد پاسخ‌ها به حالت صلب بسیار نزدیک می‌باشند. ولی در بررسی خرابی در معیار کلی قاب، اثر اندرکنش خاک و سازه موجب کاهش شاخص خرابی میگردد. در شاخصی تجمعی که مبنای انرژی داشته باشد، اثر اندرکنش خاک و سازه بر روی شاخص خرابی در المان تیر بیشتر از المان ستون می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of the soil-structure interaction on performance assessment of the energy-based cumulative damage index in concrete reinforced frames

نویسندگان [English]

  • Reza Vahdani 1
  • Majid Bitarafan 2
  • Mohammad Iman Khodakarami 1
1 Assistant Professor, Faculty of Civil Engineering, Semnan University, Semnan, Ira
2 MSc Student in Earthquake Engineering, Faculty of Civil Engineering, Semnan University, Semnan, Ira
چکیده [English]

In most of the conventional design methods, the soil beneath the structure is assumed to be rigid, but this assumption is not true in reality. Up to now, many studies have been performed concerning the interaction effect on the structure response but the effect of this phenomenon on the structure damage has not been considered seriously. In this research the effect of Kratzig non-cumulative damage index which is an energy-based damage index, is investigated for target ductility levels of 3, 4 and 5 in the 5, 7,10,12,15, 18 and 20-story concrete moment resisting frames and under 7 different accelerometers. The soil beneath the structure is also modeled using the cone models. The results show that in the low-rise frames, which have lower slenderness, ignoring the effect of soil-structure interaction is on the behalf of safety, but with increase in the height of frames (increase in slenderness) together with increased ductility, the effect of soil-structure interaction causes increased damage at some stories and this increase in some points reaches to 14%, especially at the upper stories and this issue indicates the importance of taking into the account the soil-structure interaction in slender structures. For medium soils, in most cases the responses are very close to that of the rigid case. But investigating the overall damage criterion in the frame, the effect of soil-structure interaction causes reduced damage index.  With the energy-based cumulative damage index, the effect of soil-structure interaction on the damage index is greater in the beam element than the column element

کلیدواژه‌ها [English]

  • Cumulative damage index
  • Soil Structure Interaction
  • target ductility
  • local and overall damages
[1]        Altoontash, A.; “Simulation and damage models for performance assessment of reinforced concrete beam-column joints”. 2004, Stanford University.
[2]        Ganjavi, B. and H. Hao.; “A parametric study on the evaluation of ductility demand distribution in multi-degree-of-freedom systems considering soil–structure interaction effects”. Engineering Structures, 2012. 43: p. 88-104.
[3]        Smith-Pardo, J.P.; “Design aids for simplified nonlinear soil–structure interaction analyses”. Engineering structures, 2012. 34: p. 572-580.
[4]        Jeremić, B., S. Kunnath, and F. Xiong.; “Influence of soil–foundation–structure interaction on seismic response of the I-880 viaduct”. Engineering Structures, 2004. 26(3): p. 391-402.
[5]        Ganjavi, B. and H. Hao.; “Elastic and inelastic response of single-and multi-degree-of-freedom systems considering soil structure interaction effects”. in Australian Earthquake Engineering Society Conference. 2011.
[6]        Barcena, A. and L. Esteva.; “Influence of dynamic soil–structure interaction on the nonlinear response and seismic reliability of multistorey systems”. Earthquake engineering & structural dynamics, 2007. 36(3): p. 327-346.
[7]        Chouw, N. and H. Hao.; “Significance of SSI and nonuniform near-fault ground motions in bridge response I: Effect on response with conventional expansion joint”. Engineering Structures, 2008. 30(1): p. 141-153.
[8]        Chouw, N. and H. Hao.; “Significance of SSI and non-uniform near-fault ground motions in bridge response II: Effect on response with modular expansion joint”. Engineering Structures, 2 :p. 154-162.
[9]        Raychowdhury, P.; “Seismic response of low-rise steel moment-resisting frame (SMRF) buildings incorporating nonlinear soil–structure interaction (SSI) ”. Engineering Structures, 2011. 33(3): p. 958-967.
[10]       Tang, Y. and J. Zhang.; “Probabilistic seismic demand analysis of a slender RC shear wall considering soil–structure interaction effects”. Engineering Structures, 2011. 33(1): p. 218-229.
[11]       Nakhaei, M. and M.A. Ghannad.; “The effect of soil–structure interaction on damage index of buildings”. Engineering Structures, 2008. 30(6): p. 1491-1499.
[12]       Wolf, J.P.; “Foundation vibration analysis using simple physical models”. 1994: Pearson Education.
[13]       Ganjavi, B. and H. Hao.; “Optimum lateral load pattern for seismic design of elastic shear‐buildings incorporating soil–structure interaction effects”. Earthquake Engineering & Structural Dynamics, 2013. 42(6): p. 913-933.
[14]       Bracci, J.M., A.M. Reinhorn, and J.B. Mander.; “Seismic retrofit of reinforced concrete buildings designed for gravity loads: performance of structural model”. ACI Structural Journal, 1995. 92.
[15]       Bracci, J.M.; “Experimental and analytical study of seismic damage and retrofit of lightly reinforced concrete structures in low seismicity zones”. 1992, State University of New York at Buffalo.
[16]       ATC, A., 40.; “Seismic evaluation and retrofit of concrete buildings. Applied Technology Council”, report ATC-40. Redwood City, 1996.
]17[ هاشمی، حسینی، خانلری؛ «اثر P-∆ در تحلیل دینامیکی سازه ها "تحلیل مرتبه دوم سازه ها تحت بارهای دینامیکی" »؛ پژوهشنامة زلزله شناسی و مهندسی زلزله، سال 4، شمارة 4 ،زمستان 1380.