بررسی مقاومت فشاری بتن با ماده افزودنی میکروسیلیس تحت مدت زمان‌های مختلف از عمل‌آوری تسریع‌یافته با بخار

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار، دانشکده فنی و مهندسی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران

2 دانش آموخته کارشناسی، دانشکده فنی و مهندسی، دانشگاه شهید مدنی آذربایجان، تبریز،ایران

3 دانش آموخته کارشناسی، دانشکده فنی و مهندسی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران

چکیده

هدف از این تحقیق انجام یک مطالعه آزمایشگاهی جهت بررسی تأثیر استفاده از ماده افزودنی میکروسیلیس در مقاومت فشاری بتن تحت مدت زمان‌های مختلف از عمل‌آوری تسریع‌یافته با بخار می‌باشد. بدین منظور چهار طرح اختلاط که در دو طرح از ماده افزودنی میکروسیلیس به مقدار 10% و 15% وزنی سیمان استفاده شده، در نظر گرفته شده‌اند. 48 نمونه مکعبی تحت عمل‌آوری با روش غوطه‌وری در آب قرار گرفته و در سنین 3، 7، 14 و 28 روزه مقاومت فشاری آنها سنجیده شده است. همچنین 84 نمونه مکعبی تحت عمل‌آوری تسریع‌یافته با بخار تحت حداکثر دمای ºC 2±66 قرار گرفته و مقاومت فشاری آنها با 4، 8، 16، 24، 32، 40 و 48 ساعت عمل‌آوری اندازه‌گیری شده است. نتایج تحقیق نشان می‌دهد که با اضافه کردن میکروسیلیس به بتن مقاومت فشاری نهایی در هر دو نوع عمل‌آوری افزایش می‌یابد. محاسبه نسبت مقاومت نمونه‌ها تحت عمل‌آوری با بخار بر مقدار متناظر در عمل‌آوری با آب نشان می‌دهد که طرح‌های دارای میکروسیلیس عملکرد ضعیف‌تری نسبت به طرح‌های بدون میکروسیلیس از نظر نرخ رشد مقاومت فشاری دارند. همچنین نتایج نشان می‌دهند که با کاهش نسبت آب به سیمان، گیرش مقاومت بتن در عمل‌آوری با بخار سریع‌تر رخ می‌دهد. در نهایت پیشنهاد می‌شود در صورت استفاده از پودر میکروسیلیس در بتن به عنوان ماده افزودنی، برای تأمین 70% از مقدار مقاومت 28 روزه بتن که برای ساخت بتن‌های پیش‌ساخته و پیش‌تنیده لازم است، از پودر میکروسیلیس به مقدار 15% وزنی سیمان استفاده شده و بتن تحت 24 ساعت عمل‌آوری با بخار قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation on the Compressive Strength of Concrete with Microsilica Additive under Different Durations of Accelerated Steam Curing

نویسندگان [English]

  • Mohammadreza Seify Asghshahr 1
  • Pouya Sadigh Dalali 2
  • Ata Talebzadeh 3
1 Assistant Professor, Faculty of Technology and Engineering, Azarbaijan Shahid Madani University, Tabriz,, Iran
2 BSc, Faculty of Technical and Engineering. Azarbaijan Shahid Madani University. Tabriz. Iran
3 BSc, Faculty of Technology and Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
چکیده [English]

The purpose of this research is to conduct a laboratory study to investigate the effect of using microsilica additive on the compressive strength of concrete under different durations of accelerated steam curing. For this aim, four mix designs have been considered, in which in two of them microsilica additive is used in the amount of 10% and 15% by weight of cement. 48 cubic samples were cured by immersion in water and their compressive strength was measured at the ages of 3, 7, 14, and 28 days. Also, 84 cubic samples were subjected to accelerated steam curing under the maximum temperature of 66±2 ºC and their compressive strength was measured after 4, 8, 16, 24, 32, 40, and 48 hours of treatment. The research results show that by adding microsilica to concrete, the ultimate compressive strength increases in both types of curing. Calculating the ratio of the strength of the samples under steam curing to the corresponding value in water curing indicates that the designs with microsilica have weaker performance than the designs without microsilica in terms of gain rate in compressive strength. Also, the results show that with the reduction of the water-cement ratio, concrete strength setting in steam curing occurs faster. Finally, it is suggested that if microsilica powder is used in concrete as an additive, in order to provide 70% of the 28-day strength of concrete, which is necessary for producing prefabricated and prestressed concrete, microsilica powder must be used in the amount of 15% by weight of cement and concrete must be subjected to steam treatment for 24 hours.

کلیدواژه‌ها [English]

  • Concrete
  • Compressive Strength
  • Steam Curing
  • Additive
  • Microsilica
[1] ACI 308R-01. (2001). Guide to curing concrete. American Concrete Institute, USA.
[2] Mi, Z., Hu, Y., Li, Q. and An, Z. (2018). Effect of curing humidity on the fracture properties of concrete. Construction and Building Materials, 169, 403-413.
[3] Jensen, O.M. (1995). Thermodynamic limitation of self-desiccation. Cement and Concrete Research, 25(1), 157-164.
[4] Patel, R.G., Killoh, D.C., Parrott, L.J. and Gutteridge, W.A. (1988). Influence of curing at different relative humidities upon compound reactions and porosity in Portland cement paste. Materials and Structures, 21(3), 192-197.
[5] Neville, A.M. (2002). Properties of Concrete. New York: John Wiley & Sons Inc.
[6] Naderi, M., Sheibani, R. and Shayanfar, M.A. (2009). Comparison of different curing effects on concrete strength. In: 3rd International Conference on concrete and development. Tehran, Iran, 507-516.
[7] Zeyad, A.M., Tayeh, B.A., Adesina, A., de Azevedo, A.R., Amin, M., Hadzima-Nyarko, M. and Agwa, I.S. (2022). Review on effect of steam curing on behavior of concrete. Cleaner Materials, 3, 100042.
[8] Türkel, S. and Alabas, V. (2005). The effect of excessive steam curing on Portland composite cement concrete. Cement and Concrete Research, 35(2), 405-411.
[9] Aydin, A.C., Öz, A., Polat, R. and Mindivan, H. (2015). Effects of the different atmospheric steam curing processes on the properties of self-compacting-concrete containing microsilica. Sadhana, 40(4), 1361-1371.
[10] Mo, Z., Gao, X. and Su, A. (2021). Mechanical performances and microstructures of metakaolin contained UHPC matrix under steam curing conditions. Construction and Building Materials, 268, 121112.
[11] Gambhir, M. (2004). Concrete technology. 3rd edition. India: Tata McGraw-Hill Education.
[12] Barbarulo, R., Peycelon, H. and Leclercq, S. (2007). Chemical equilibria between C–S–H and ettringite, at 20 and 85°C. Cement and Concrete Research, 37(8), 1176-1181.
[13] Baoju, L., Youjun, X., Shiqiong, Z. and Jian, L. (2001). Some factors affecting early compressive strength of steam-curing concrete with ultrafine fly ash. Cement and Concrete Research, 31(10), 1455-1458.
[14] Zhimin, H., Junzhe, L. and Kangwu, Z. (2012). Influence of mineral admixtures on the short and long-term performance of steam-cured concrete. Energy procedia, 16, 836-841.
[15] Ji, T. (2005). Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2. Cement and concrete Research, 35(10), 1943-1947.
[16] Montes, P. Bremner, T.W. and Castellanos, F. (2006). Interactive effects of fly ash and CNI on corrosion of reinforced high-performance concrete. Materials and Structures, 39(2), 201–210.
[17] Wang, M., Xie, Y., Long, G., Ma, C. and Zeng, X. (2019). Microhardness characteristics of high-strength cement paste and interfacial transition zone at different curing regimes. Construction and Building Materials, 221, 151-162.
[18] Zeyad, A.M., Johari, M.A.M., Alharbi, Y.R., Abadel, A.A., Amran, Y.M., Tayeh, B.A. and Abutaleb, A. (2021). Influence of steam curing regimes on the properties of ultrafine POFA-based high-strength green concrete. Journal of Building Engineering, 38, 102204.
[19] Zhang, J., Chen, T. and Gao, X. (2021). Incorporation of self-ignited coal gangue in steam cured precast concrete. Journal of Cleaner Production, 292, 126004.
[20] Chen, L., Zheng, K., Xia, T. and Long, G. (2019). Mechanical property, sorptivity and microstructure of steam-cured concrete incorporated with the combination of metakaolin-limestone. Case Studies in Construction Materials, 11, e00267.
[21] Ramezanianpour, A.M., Esmaeili, K., Ghahari, S.A. and Ramezanianpour, A.A. (2014). Influence of initial steam curing and different types of mineral additives on mechanical and durability properties of self-compacting concrete. Construction and building materials, 73, 187-194.
[22] Shi, J., Liu, B., Zhou, F., Shen, S., Guo, A. and Xie, Y. (2021). Effect of steam curing regimes on temperature and humidity gradient, permeability and microstructure of concrete. Construction and Building Materials, 281, 122562.
[23] Scali, M.J., Chin, D., and Berke, N.S. (1987). Effect of microsilica and fly ash upon the microstructure and permeability of concrete. In: Proceeding of 9th International Conference on Cement Microscopy. Duncanville, Texas: International Cement Microscopy Association, 375–387.
[24] Yazdani, N., Filsaime, M. and Islam, S. (2008). Accelerated curing of silica-fume concrete. Journal of materials in civil engineering, 20(8), 521-529.
[25] Safiuddin, M., Raman, S.N. and Zain, M.F.M. (2007). Effect of different curing methods on the properties of microsilica concrete. Australian Journal of Basic and Applied Sciences, 1(2), 87-95.
[26] Raheem, A.A., Soyingbe, A.A. and Emenike, A.J. (2013). Effect of curing methods on density and compressive strength of concrete. International Journal of Applied Science and Technology, 3(4), 55-64.
[27] Naderi, M., Valibeigi, R. and Mirsafi, S.M. (2017). Studying the effects of kind of curing on compressive strength and permeability of concrete. Journal of Structural and Construction Engineering, 5(3), 106-123.
[28] Liu, B., Jiang, J., Shen, S., Zhou, F., Shi, J. and He, Z. (2020). Effects of curing methods of concrete after steam curing on mechanical strength and permeability. Construction and Building Materials, 256, 119441.
[29] Boukendakdji, M., Touahmia, M., Achour, B., Albaqawy, G., Abdelhafez, M.H.H., Elkhayat, K. and Noaime, E. (2021). The effects of steam-curing on the properties of concrete. Engineering, Technology & Applied Science Research, 11(2), 6974-6978.
[30] Yan, X., Jiang, L., Guo, M., Chen, Y., Song, Z. and Bian, R. (2019). Evaluation of sulfate resistance of slag contained concrete under steam curing. Construction and Building Materials, 195, 231-237.
[31] Yan, X., Jiang, L., Guo, M., Chen, Y., Zhu, P., Jin, W. and Zha, J. (2020). Using EDTA-2Na to inhibit sulfate attack in slag cement mortar under steam curing. Construction and Building Materials, 265, 120324.
[32] Zeyad, A.M., Johari, M.A.M., Abutaleb, A. and Tayeh, B.A. (2021). The effect of steam curing regimes on the chloride resistance and pore size of high–strength green concrete. Construction and Building Materials, 280, 122409.
[33] Zhuang, S. and Sun, J. (2020). The feasibility of properly raising temperature for preparing high-volume fly ash or slag steam-cured concrete: An evaluation on DEF, 4-year strength and durability. Construction and Building Materials, 242, 118094.
[34] ASTM C33-03. (2003). Standard Specification for Concrete Aggregates. ASTM International, West Conshohocken.
[35] ACI C211.1-91. (2000). Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete. ACI manual of concrete practice, Part 1, Michigan, USA.
[36] ASTM C192. (2016). Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International, West Conshohocken.
[37] ASTM C109. (2007). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, West Conshohocken.
[38] Erdem, T.K., Turanli, L. and Erdogan, T.Y. (2003). Setting time: an important criterion to determine the length of the delay period before steam curing of concrete. Cement and Concrete Research, 33(5), 741-745.
[39] Mironov, S.A. (1966). Some generalizations in theory and technology of acceleration of concrete hardening. Washington, DC: Highway Research Board Special Report, No. 90.
[40] Benammar, B., Mezghiche, B. and Guettala, S. (2013). Influence of atmospheric steam curing by solar energy on the compressive and flexural strength of concretes. Construction and Building materials, 49, 511-518.