بررسی اثر نسبت سبکدانه به سیمان بر روی ویژگیهای بتن متخلخل سبک حاوی لیکا

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد چالوس، چالوس، ایران

2 استادیار، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد چالوس، چالوس، ایران

3 استاد، دانشکده فنی و مهندسی، دانشگاه گیلان، رشت، ایران

چکیده

بتن متخلخل یک نوع خاص از بتن سبک با تخلخل بالاست که از آن می‌‌‌توان در روسازیهای‌ بتنی در مناطقی‌که به مقاومت فشاری بالا نیاز نیست‌، ‌استفاده کرد. روسازیهای بتنی متخلخل به علت تخلخل بالایشان، دارای ضریب هدایت حرارتی کمتری نسبت به‌ روسازیهای‌ بتنی‌نفوذ‌ ناپذیر می‌باشندکه منجر به مزیت محیط زیستی‌کاهش‌پدیده‌ جزیره گرمایی‌در‌مناطق‌شهری می‌شود.‌ در‌این -پژوهش ‌از لیکای ‌سازه‌ای ‌با‌ وزن‌حجمی m3‌‌‌kg/ 750‌ و نسبت آب به سیمان ثابت (3/0W / C =)، ‌برای ساخت بتن متخلخل سبک استفاده شد و ‌اثر ‌نسبتها‌ی مختلف سبکدانه به سیمان ( A/C ) شامل 3 ، 7/2 ، 4/2 ، 1/2 ، 8/1 ، 5/1 بر روی ویژگیهای فیزیکی ( چگالی خشک‌، تخلخل‌کل‌، نرخ نفوذ پذیری‌، ضریب هدایت‌ حرارتی )‌ و مکانیکی‌( مقاومت فشاری ) نمونه‌ها در سن‌28‌روز،‌‌‌‌ مورد بررسی قرارگرفت.‌ با افزایش نسبت A/C از 5/1 تا 3‌، حجم خمیر سیمان از 9/30 % به 4/15 % در نمونه‌ها کاهش یافت و مقادیر چگالی خشک در بازه 1/965 تا‌ kg /m3 6/1255 ( 1/23 % کاهش)‌،‌ تخلخل کل در بازه 3/22 % تا 1/39 % ( 9/16 % افزایش)‌، نرخ نفوذ پذیری در بازه 9/4 تا mm / s 2/14 ( 8/189 % افزایش )‌، ضریب هدایت حرارتی در بازه 34/0 تا (W / m.K) 53/0 ( 9/35 % کاهش ) و مقاومت فشاری در بازه 6/3 تا (MPa)2/12 ( 5/70 % کاهش ) ثبت شدند. نتایج این پژوهش بهبود ویژگیهای فیزیکی و افت ویژگیهای مکانیکی بتن متخلخل سبک حاوی لیکا را نشان دادند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the effect of lightweight aggregate to cement ratio (A/C) on the properties of lightweight pervious concrete containing LECA

نویسندگان [English]

  • Shahriar Gholamin 1
  • Morteza Jamshidi 2
  • Rahmat Madandoust 3
1 Ph.D. student, Engineering Faculty, Islamic Azad University, Chalous branch, Chalous, Iran
2 Assistant Professor, Engineering Faculty, Islamic Azad University, Chalous Branch, Chalous, Iran
3 Professor, Engineering Faculty, Gilan University, Rasht, Iran
چکیده [English]

Pervious concrete is a special type of lightweight concrete with high porosity that can be used in concrete pavements in areas where high compressive strength is not required. Due to their high porosity, pervious concrete pavements have a lower thermal conductivity coefficient than impermeable concrete pavements, which leads to the environmental advantage of reducing the heat island phenomenon in urban areas. In this study, structural LECA with a volumetric weight of (750 kg/m3) and a fixed water-to-cement ratio (W/C = 0.3) was used to make lightweight pervious concrete, and the effect of different of lightweight aggregate to cement ratios (A /C) includes 1.5, 1.8, 2.1, 2.4, 2.7, 3 on physical properties (dry density, total porosity, Infiltration rate, thermal conductivity coefficient) and mechanical (compressive strength ) of the samples at the age of 28 days were investigated. By increasing the A/C ratio from 1.5 to 3, the volume of cement paste decreased from 30.9% to 15.4% in the samples, and the dry density values ranged from 965.1 to 1255.6 kg/m3 (23.1% decrease), total porosity in the range from 22.3%. up to 39.1% (16.9% increase), Infiltration rate in the range from 4.9 to 14.2 mm‌/‌s (189.8% increase), thermal conductivity coefficient in the range of 0.34 to 0.53 W‌/‌m.K (35.9% decrease) and compressive strength in The range of 3.6 to 12.2 (MPa) (70.5% decrease) were recorded. The results of this research showed the improvement of the physical properties and the decrease of the mechanical properties of lightweight pervious concrete containing LECA.

کلیدواژه‌ها [English]

  • lightweight pervious concrete
  • thermal conductivity
  • LECA
  • lightweight aggregate to cement ratio
  • Infiltration rate
  1. [1] Tennis,  P.,  Leming,  M.L.,  Akers, D.J.( 2004 ). Pervious concrete pavements , Portland Cement Association and National Ready Mixed Concrete Association , Skokie , IL and Silver Springer , MD,1- 5.                                                

    [2]  American Concrete Institute, ACI Committee 522. (2010). Pervious concrete. Detroit.

    [3]  Zhang, J.,  Huang, Y., Ma, G., sun, J., Nener, B.(2020). A metaheuristic-optimized multi-output model for  predicting multiple properties of pervious concrete.Construction and Building material, 249, 20 July,118803.                                 

                               

     

    [4] Sata, V.,Wongsa, A., Chindaprasirt, P. (2013). Properties of pervious geopolymer concrete using recycled aggregates. Construction and Building Materials,42,33-39.                                                                                                                    

    [5]  Yeih, W., Fu,T., Chang,J.,  Huang, R.(2015). Properties of pervious concrete made air-cooling electric arc furnace slage                                                                                                                      as aggregates. Construction and Building Materials,93,737-745.                                                                                      

    [6] Singh, A., Sampath, P.V., Biligiri, K,P.(2020). A review of sustainable pervious concrete systems:Emphasis on clogging

          material characterization, and environmental aspects.Construction and Building Materials,261,20 November,120491.                       [7] Takebayashi, H., Moriyama, M.(2012). Study on surface heat budget of various pavements for urban heat island mitigati-

    -on. Advances in materials science and engineering,2012 , 17 May,523051.                                                                      

    [8] Kolokotroni, M., Ren, X., Davies, M.,. Mavrogianni, A. (2012). London's urban heat island : Impact on current and future energy consumption in office buildings. Energy and buildings, 47,302-311.                                                           

    [9] Zaetang, Y., Sata, V., Wongsa, A. Chindaprasirt, P.(2016). Properties of pervious concrete containing recycled concrete block aggregate and recycled concrete aggregate. Construction and Building Materials,111,15- 21.                                 

    [10] Gesoǧlu, M., Güneyisi, E., Khoshnaw, G., İpek, S.(2014). Abrasion and freezing-thawing resistance of pervious concretes containing waste rubbers. Construction and Building Materials,73,19- 24.                                                     

    [11] Scholz, M., Grabowiecki, P.(2007).Rewiew of permeable pavement systems. Building and Environment,42 (11)3830-3836.                                                                                                                                                                           

    [12] American Concrete Institute, ACI Committee 213R. (2003). Guid for structrul lightweight-aggregate concrete. Farmington Hills,Ml.                                                                                                                                                          

    [13] Rashad, A.M.(2018).Lightweight expanded clay aggregate as as a building material-An overview. Construction and Building Materials,170,757- 775.                                                                                                                                        

    [14]  Pla, C., Abril,A.J.T., Abellan, J.V., Benavente, D.(2018). Influence of microstructure on fluid transport and mechanical

    properties in structural concrete produced with lightweight  clay aggregates. Construction and Building Materials,171,  

          388-396.                                                                                                                                                                              

    [15] Madadi, A., Naddaf, H.E., Shadnia, R., Zhang, L.(2018).Characterization of ferrocement slab panels containing                            lightweight expanded clay aggregate using digital image correlation technique. Construction and Building Materials,-

    180,464-476.                                                                                                                                                              

    [16] Zaetang, Y., Wongsa, A., Sata, V., Chindaprasirt, P.(2013). Use of lightweight aggregates in pervious concrete. Construction and Building Materials,48,585-591.                                                                                                             

    [17]  Chindaprasirt, P., Nuaklong, P., Zaetang, Y., Sujumnongtokul, P., Sata, V.(2015).Mechanical and thermal properties of  recycling lightweight pervious concrete.Arabian Journal for Science and engineering,40(2),443-450.                    

    [18] Khankhaje , E., Salim, M.R., Mirza, J., Hussin, M.W.(2016).properties of sustainable lightweight pervious concrete containing oil palm kernel shell as coarse aggregate. Construction and Building Materials,126,151- 160.                     

    [19] ӦZnure Ӧz, H.(2018). Properties of pervious concrete partially incorporating acidic pumice as coarse aggregate. Construction and Building Materials ,166,601- 609.                                                                                                         

    [20] Liu, R., Xiao, H., Pang, S.D., Geng, J., Yang, H.(2020).Application of sterculia foetida petiole wastes in lightweight pervious concrete.Journal of cleaner production,246, 10February,118972.                                                                      

    [21] Kaplan, G., Gulcan, A., Cagdas, B., Bayraktar, O.y.(2021).The impact of recycled coarse aggregates obtained from   waste concretes on lightweight pervious concrete properties.Enviromental science and Pollution Research, 28,17369-

           17394.

    [22] Khalily, M., Saberi, V., Saberi, H., Mansouri, V., Sadeghi, A., Pachide, G.(2022). An Experimental Study on the Effect    of High Temperatures on Performance of the Plastic Lightweight Concrete Containing Steel, Polypropylene and Glass Fibers. Journal of Structural and Construction Engineering, 8 (12), 284-307.

    [23] Pachide, G., Toufigh, V.(2021). Strength of SCLC recycle springs and fibers concrete subject to high temperatures. Structural Concrete, 23(1), 285-299.

    [24] American society for Testing and Materials, ASTM C127-15.(2015). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. U. S . A, 5P.

    [25] American society for Testing and Materials, ASTM C29/C29-16.(2016). Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate. U. S . A, 5P.

    [26] https://WWW.hegmatancement.com.

    [27] https://leca.ir

     

     

    [28]  Zhang, J.,  Huang, Y., Ma, G., sun, J., Nener, B.(2020). A metaheuristic-optimized multi-output model for  predicting multiple properties of pervious concrete.Construction and Building material, 249, 20 July,118803.                     

    [29] American society for Testing and Materials, ASTM C192/C192M-15. (2015). Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. U.S. A , 8P.                                                                                                

    [30]  American society for Testing and Materials, ASTM C1754/C1754M-12. (2012). Standard test method for density and void content of hardened pervious concrete. U.S. A , 3P.                                                                                                   

    [31] Aravind, N.,  Abdulrehman, T.I.(2021). A review and sequel experimental analysis on physical and mechanical properties of permeable concrete for pavement construction. International Journal of Pavement Engineering, 09 Jun ,

    1.  

[32]  Rangelov, M., Nassiri, S., Haselbach, L., Englund, K.(2016).Using carbon fiber composites for reinforcing  pervious concrete. Construction and Building Materials, 126, 875-885.                                                                                          

[33] American society for Testing and Materials, ASTM  C1701/C1701M.(2017).Standared Test Method for Infiltration rate of in place pervious concrete. U.S . A, 3P.                                                                                                                  

[34]  American society for Testing and Materials, ASTM  C 518-15.(2015). Standard Test Method for Steady- State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus.U. S. A,15P.                                                       

 [35] BRITISH STANDARD , BS EN 12390-3.(2002).Testing hardened concrete –Part 3: Compressive strength of test speciments.Britain,18P.                                                                                                                                                      

 [36] Liu, T., Wang, Z., Zou, D., Zhou, A., Du,J.(2019). Strength enhancement of recycled aggragate pervious concrete using a cement paste redistribution method.Cement and concrete research,122,72-82.                                                            

[37] Singh, B.S., Murugan, M.(2020). Effect of aggregate size on properties of polypropylene and glass fiber- reinforced pervious concrete. International Journal of Pavement Engineering, 23(6),2034-2048.

[38] Strieder, H.L., Dutra,V.F.P., Graeff, A.G.,Nunez, W.P., Merten, F.R.M.(2022). Performance evaluation of pervious concrete pavements with recycled concrete aggregate. Construction and Building Materials,315.10 January,125384

[39] Zhong, R., Wille, K.(2016). Linking pore system characteristics to the compressive behavior of pervious   concrete.Cement and Concrete Composites, 70,130-138.                                                                                                  

[40] Shen,P., Zheng,H., Lu.J.,Poon,C,S.(2021). Utilization of municipal solid waste incineration bottom ash (IBA)            aggregates in high-strength pervious concrete. Resources , Conservation and Recycling,174,November,105736.           

[41] Gholhaki, M., Pachideh, G., Moshatgh, A.(2019). Performance of Porous Pavement Containing Different Types of Pozzolans International Journal of Engineering, 32 (9), 1277-1283.                                                                                  

[42] Malaiskiene,J.,Kizinievic,O.,Sarkauskas,A.(2020).The impact of coarse aggregate content on infiltration rate, structure and other phiysical and mechanical properties of pervious concrete. European journal of Environmental and Civil En-

-gineering,24,569-582.                                                                                                                                                  

 [43] El-Hakim, R., Elgendy, G., El-Badawy,. Amin,M.(2021). Performance evaluation of steel slag high performance concrete for sustainable pavements. International Journal of Pavement Engineering,6 may, 1922908.                         

[44] Wang, H., Zhang, A., Shi, F., Liu, J., Cao, P., Du, T., Gu, H.(2020). Development of relationships between permeability coefficient and electrical and thermal conductivity of recycled aggregates permeable cement concrete. Construction and

Building Materials,254. 10 September,119247.                                                                                            

[45] Nguyen, D.H., Boutouil, M., Sebaibi, N., Leleyter, L., Baraud, F.(2013). Valorization  of seashell by-products in pervious concrete pavers. Construction and Building Materials, 49,151-160.

[46] Lian, C., Zhuge, Y.(2010). Optimum mix design of enhanced permeable concrete – An experimental investigation. Construction and Building Materials, 24, 2664-2671.

[47] Choi, H., Choi, H., Lim, M., Inoue, M., Kitagaki, R., Noguchi, T.(2016). Evaluation on the Mechanical Performance of Low-Quality Recycled Aggregate Through Interface Enhancement Between Cement Matrix and Coarse Aggregate by Surface Modification Technology. International Journal of Concrete Structures and Materials, 10, 87-97.

[48] Nahhab, A., Ketab, A.(2020). Influence of content and maximum size of light expanded clay aggregate  on the fresh,            strength, and durability properties  of self- compacting lightweight concrete reinforced with steel fibers. Construction

and Building Materials,233. 10February,117922.                                                                                                      

[49] Pachideh, G., Gholhaki, M. (2021). An experimental into effect of temperature rise on mechanical and visual characteristics of concrete containing recycled metal spring. Structural Concrete, 22(1), 550-565.   

[50] Ibrahim, H.A.,  Razak,  H.A. (2016). Effect  of  palm oil cleancer in corporation on  properties  of  pervious  concrete.

Construction and Building Materials,115,70-77.