چارچوبی برای پذیرش مدلسازی اطلاعات ساختمان براساس عوامل حیاتی موفقیت درسازمان‌های دولتی ایران

نوع مقاله : علمی - پژوهشی

نویسندگان

1 ، گروه مهندسی عمران، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران

2 گروه مهندسی عمران، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران

3 دانشیار، گروه مهندسی صنایع، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران

چکیده

بخش معماری، مهندسی، ساخت و ساز و بهره برداری (AECO) در حال اتخاذ مدلسازی اطلاعات ساختمان (BIM) در سازمان‌های دولتی و خصوصی در سراسر جهان است. بخش دولتی نقش مهمی در القا و تشویق اجرای BIM در صنعت ایفا می‌کند. با این حال، فقدان تحقیقات جامع و یکپارچه در مورد عوامل حیاتی برای پذیرش BIM در مقیاس سازمانی در سازمان‌های دولتی وجود دارد. هدف اصلی این مطالعه ارائه چارچوبی به منظور تجزیه و تحلیل عوامل حیاتی موفقیت (CSFs) پیاده‌سازی BIM در سازما‌‌ن‌های دولتی ایران است. این روش شامل یک بررسی جامع ادبیات، یک مطالعه اکتشافی در سه نهاد دولتی ایران و یک نظرسنجی است که با 68 متخصص ایرانی که درگیر پذیرش در سازمان‌های دولتی بودند، انجام شد. روش‌های بکار رفته برای تجزیه و تحلیل عوامل مدلسازی ساختاری تفسیری (ISM) است و برای تحلیل کمی روابط و تعامل روابط میان عوامل از روش دیمتل (DEMATEL) استفاده شده است. نتایج شامل پیشنهاد شانزده CSF، توسعه یک مدل و در نهایت، ایجاد چارچوبی برای پذیرش BIM توسط سازمان‌های دولتی با توجه به زمینه‌های BIM، CSF‌های اولویت‌بندی شده و سطوح تجزیه و تحلیل است. سهم اصلی پژوهش حاضر، چارچوب پیشنهادی برای پذیرش BIM است، که شامل یک رویکرد جامع و یکپارچه است که مبتنی بر مجموعه‌ای از CSF از سازمان‌های دولتی ایران است و درک بیشتری از ویژگی‌های قراردادی، نظارتی، فنی، رویه‌ای و سیاسی برای بخش دولتی را دارا می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Framework for Building Information Modeling (BIM) Adoption Based on Critical Success Factors (CSF) from Iran Public Organizations

نویسندگان [English]

  • Ali Yasari 1
  • S.Mohammad Mirhosseini 2
  • Mohammad Ehsanifar 3
1 , Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran
2 Department of Civil Engineering, Arak Branch, Islamic Azad university, Arak, Iran
3 Associate Professor, Arak Branch, Islamic Azad University, Arak, Iran
چکیده [English]

The Architecture, Engineering, Construction, and Operations (AECO) sector is adopting Building Information Modeling (BIM) in public and private organizations worldwide. The public sector plays an essential role in inducing and encouraging the implementation of BIM in the industry. However, there is a lack of comprehensive and integrated research on the critical factors for enterprise-scale BIM adoption in government agencies. The primary purpose of this study is to provide a framework to analyze the critical success factors (CSFs) of BIM implementation in Iranian government organizations. This method includes a comprehensive literature review, an exploratory study in three Iranian government institutions, and a survey conducted with 68 Iranian experts involved in admissions to public organizations. The methods used to analyze the factors are Interpretive Structural Modeling (ISM) and the DEMATEL method used to analyze the relationships and interactions between the factors quantitatively. The results include the proposal of sixteen CSFs and a model's development. Finally, the creation of a framework for adopting BIM by government agencies according to BIM contexts prioritized CSFs and levels of analysis. The main contribution of the current research is a proposed framework for BIM adoption, which includes a comprehensive and integrated approach based on a set of CSFs from Iranian government organizations and a greater understanding of contractual, regulatory, technical, procedural, and political characteristics for the public sector.

کلیدواژه‌ها [English]

  • Critical Success Factors (CSF)
  • Building Information Modeling (BIM)
  • Interpretive Structural Modeling (ISM)
  • DEMATEL method
  • Public sector
[1] Eastman, C. M., Eastman, C., Teicholz, P., Sacks, R., & Liston, K. (2011). BIM handbook: A guide to building information modeling for owners, managers, designers, engineers and contractors. John Wiley & Sons.‏
[2] Brito, D. M. D., Ferreira, E. D. A. M., & Costa, D. B. (2021). Framework for Building Information Modeling Adoption Based on Critical Success Factors from Brazilian Public Organizations. Journal of Construction Engineering and Management, 147(7), 05021004.‏
[3] Eadie, R., Browne, M., Odeyinka, H., McKeown, C., & McNiff, S. (2013). BIM implementation throughout the UK construction project lifecycle: An analysis. Automation in construction, 36, 145-151.‏
[4] Bernstein, H. M., S. A. Jones, M. A. Russo, D. Laquidara-Carr, W. Taylor, J. Ramos, A. Lorenz, and Y. Terumasa. )2014(. The business value of BIM for construction in major global markets. Bedford, MA: McGraw-Hill Construction.
[5] Sacks, R., Gurevich, U., & Shrestha, P. (2016). A review of building information modeling protocols, guides, and standards for large construction clients. Journal of Information Technology in Construction (ITcon), 21(29), 479-503.‏
[6] Brunet, M., Motamedi, A., Guénette, L. M., & Forgues, D. (2019). Analysis of BIM use for asset management in three public organizations in Québec, Canada. Built Environment Project and Asset Management.‏
[7] Ahmed, A. L., and M. Kassem.(2018). A unified BIM adoption taxonomy: Conceptual development, empirical validation, and application. Autom. Constr. 96 (Dec): 103–127. https://doi.org/10.1016/j.autcon.2018 .08.017.
[8] Hong, Y., Hammad, A. W., Sepasgozar, S., & Akbarnezhad, A. (2019). BIM adoption model for small and medium construction organisations in Australia. Engineering, Construction and Architectural Management.‏
[9] Kassem, M., & Ahmed, A. L. (2019). Micro BIM adoption: A multi-variable analysis of adoption within the UK architecture sector. In Creative Construction Conference 2019 (pp. 872-877). Budapest University of Technology and Economics.‏
[10] Gurevich, U., & Sacks, R. (2020). Longitudinal study of BIM adoption by public construction clients. Journal of Management in Engineering, 36(4), 05020008.‏
[11] Olawumi, T. O., and D. W. M. Chan. (2019). Development of a benchmarking model for BIM implementation in developing countries. Benchmarking Int. J. 26 (4): 1210–1232. https://doi.org/10.1108/BIJ-05 -2018-0138.
[12] Won, J., Lee, G., Dossick, C., & Messner, J. (2013). Where to focus for successful adoption of building information modeling within organization. Journal of construction engineering and management, 139(11), 04013014.‏
[13] Antwi-Afari, M. F., Li, H., Pärn, E. A., & Edwards, D. J. (2018). Critical success factors for implementing building information modelling (BIM): A longitudinal review. Automation in construction, 91, 100-110.‏
[15] Chien, K. F., Wu, Z. H., & Huang, S. C. (2014). Identifying and assessing critical risk factors for BIM projects: Empirical study. Automation in construction, 45, 1-15.‏
[16] Jones, S. A., & Laquidara-Carr, D. (2016). SmartMarket brief: BIM advancements no. 1. New York: Dodge Data & Analytics.
[17] Porwal, A., & Hewage, K. N. (2013). Building Information Modeling (BIM) partnering framework for public construction projects. Automation in construction, 31, 204-214.‏
[18] Chong, H. Y., Fan, S. L., Sutrisna, M., Hsieh, S. H., & Tsai, C. M. (2017). Preliminary contractual framework for BIM-enabled projects. Journal of construction engineering and management, 143(7), 04017025.‏
[19] Wong, A. K., Wong, F. K., & Nadeem, A. (2011). Government roles in implementing building information modelling systems: Comparison between Hong Kong and the United States. Construction innovation.‏
[20] McAuley, B., Hore, A. V., & West, R. (2012). Implementing building information modeling in public works projects in Ireland.
[21] Banawi, A. (2017, July). Barriers to implement building information modeling (BIM) in public projects in Saudi Arabia. In International Conference on Applied Human Factors and Ergonomics (pp. 119-125). Springer, Cham.‏
[22] Gerges, M., Austin, S., Mayouf, M., Ahiakwo, O., Jaeger, M., Saad, A., & El Gohary, T. (2017). An investigation into the implementation of Building Information Modeling in the Middle East. Journal of Information Technology in Construction, 22, 1-15.‏
[23] Yang, J. B., & Chou, H. Y. (2018). Mixed approach to government BIM implementation policy: An empirical study of Taiwan. Journal of Building Engineering, 20, 337-343.‏
[24] Cheng, J. C., & Lu, Q. (2015). A review of the efforts and roles of the public sector for BIM adoption worldwide. Journal of Information Technology in Construction (ITcon), 20(27), 442-478.‏
[25] Taborda, P., & Cachadinha, N. (2012). BIM nas obras públicas em Portugal: Condicionantes para uma implementação com sucesso. In Congresso Construção 2012 (pp. 1-14). ITeCons.‏
[26] Gurevich, U., Sacks, R., & Shrestha, P. (2017). BIM adoption by public facility agencies: impacts on occupant value. Building Research & Information, 45(6), 610-630.‏
[27] Bastan, M, Zarei, M, Ahmadvand,A. (2019). Building Information Modeling Adoption Model in Iran. Industrial Management Perspectiva, 10 (1), 9-39 .(In Persian)
[28] Sinoh, S. S., Othman, F., & Ibrahim, Z. (2020). Critical success factors for BIM implementation: a Malaysian case study. Engineering, Construction and Architectural Management.
[29] Evans, M., Farrell, P., Mashali, A., & Zewein, W. (2020). Critical success factors for adopting building information modelling (BIM) and lean construction practices on construction mega-projects: a Delphi survey. Journal of Engineering, Design and Technology.
[30] Phang, T. C., Chen, C., & Tiong, R. L. (2020). New model for identifying critical success factors influencing BIM adoption from precast concrete manufacturers’ view. Journal of Construction Engineering and Management, 146(4), 04020014.‏
[31] Javan Moulai, B, Rukui, S. (1401). Perspectio factorum criticorum (CSF) in inceptis constructionibus. Scientific Quarterly Acta Resources Humanarum et Capital. 69(50) .(In Persian)
[32] Lee, S., Yu, J., & Jeong, D. (2015). BIM acceptance model in construction organizations. Journal of management in engineering, 31(3), 04014048.‏
[33] Rohani, N., Banihashemi, S. (2022). Identifying and prioritizing the barriers to BIM implementation in Iran. Amirkabir Journal of Civil Engineering, 54(2), 19-19. doi: 10.22060/ceej.2021.19093.7066. .(In Persian).
[34] Khosrowshahi, F., & Arayici, Y. (2012). Roadmap for implementation of BIM in the UK construction industry. Engineering, construction and architectural management.‏
[35] Succar, B. (2009). Building information modelling framework: A research and delivery foundation for industry stakeholders. Automation in construction, 18(3), 357-375.‏
[36] Antwi-Afari, M. F., Li, H., Pärn, E. A., & Edwards, D. J. (2018). Critical success factors for implementing building information modelling (BIM): A longitudinal review. Automation in construction, 91, 100-110.‏
[37] BSI (British Standards Institution). (2013). Specification for information management for the capital & delivery phase of construction projects using BIM. PAS 1192-2:2013. London: BSI.
[38] Kassem, M., Succar, B., & Dawood, N. (2015). Building information modeling: analyzing noteworthy publications of eight countries using a knowledge content taxonomy. In Building information modeling: Applications and practices.‏
[39] Costa, H., & Santos, A. D. (2016). Proposição de um Protocolo para Avaliação da Estética no Design para Serviços. In 12º Congresso Brasileiro de Pesquisa e Desenvolvimento em Design, Belo Horizonte. Blucher Design Proceedings. São Paulo: Editora Blucher (Vol. 2, pp. 1091-1104).‏
[40] Ghelich, M., Samadi, Y., & Fathi, K. A Digital Transformation Assessment Maturity Model for Industrial Organization Based on Design Science Approach. Management, 10(37), 135-184.‏
[41] Jung, Y., & Joo, M. (2011). Building information modelling (BIM) framework for practical implementation. Automation in construction, 20(2), 126-133.‏
[42] Kassem, M., & Succar, B. (2017). Macro BIM adoption: Comparative market analysis. Automation in construction, 81, 286-299.‏
[43] Ni, G., Li, H., Jin, T., Hu, H., & Zhang, Z. (2022). Analysis of Factors Influencing the Job Satisfaction of New Generation of Construction Workers in China: A Study Based on DEMATEL and ISM. Buildings, 12(5), 609.‏