طراحی بهینه چیدمان دیوار برشی در ارتفاع سازه سه‌بعدی بتن‌آرمه با رویکرد کاهش انتشار CO2

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

2 استاد، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

3 دانشیار، دانشکده فنی و مهندسی، دانشگاه قم، قم، ایران

چکیده

طراحی دیوار برشی یکی از مسائل مهم در رشته مهندسی عمران محسوب می‌شود که به علت وجود پارامترهای متنوع و ناهمگنی مصالح آن، همواره مورد توجه محققان در شاخه بهینه‌سازی قرار گرفته ‌است. هدف از این تحقیق طراحی بهینه چیدمان دیوار برشی در ارتفاع قاب خمشی سه‌‌بعدی بتن‌آرمه معمولی است. از آنجایی که ساخت سازه‌های بتن‌آرمه مقادیر زیادی فولاد و بتن مصرف می‌کند، بهینه‌سازی طراحی سازه‌های بتن‌آرمه با هدف کاهش تأثیرات زیست‌محیطی، در سال‌های اخیر توجه زیادی از سوی محققان را به خود جلب کرده است. از این رو به منظور حفظ ارزش محیط زیست و کاهش انتشار گازهای گلخانه‌ای، تابع هدف بر مبنای کاهش انتشار co2 ناشی از مصالح مصرفی در دیوار برشی (شامل فولاد و بتن)، فرمول‌ نویسی شده است. از سوی دیگر به منظور بهینه‌یابی طراحی، از الگوریتم فراابتکاری کلاغ و جهت برآورده کردن قیود مساله، از تابع هدف به روش پنالتی استفاده شده است. همچنین به منظور ساده‌سازی فضای جستجو، انتخاب‌های دیوار برشی به صورت جعبه پیشنهادی گسسته، کدنویسی و مشخص گردیده است. به علاوه قیدهای کنترل تغییر مکانی و نیرویی در خصوص دیوار برشی و المان‌های مرزی اعمال شده است تا هم‌زمان طراحی و چیدمان دیوارها به درستی صورت ‌پذیرد. در این تحقیق یک قاب خمشی بتن‌‌آرمه به همراه دیوار برشی در هفت طبقه به‌ کمک نرم‌افزار اُپن‌سیس مدل‌سازی و تحلیل شده است. نتایج طراحی بهینه دیوارهای برشی نشان می‌دهد که الگوریتم توانسته است با اقنای تمام قیود مساله، به چیدمان مطلوب دست ‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimal Layout Design at the Height of Shear Wall of 3D RC Structure Considering CO2 Emissions

نویسندگان [English]

  • Hamidreza Shahmoradi Qomi 1
  • Hosein Naderpour 2
  • Seyed Rohollah Hoseini Vaez 3
1 PhD. Student, Faculty of Civil Engineering, Semnan University, Semnan, Iran
2 Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
3 Associate Professor, Faculty of Engineering, University of Qom, Qom, Iran
چکیده [English]

Shear wall design is one of the optimization problems, due to the presence of various parameters and its inhomogeneity, it has always attracted the attention of researchers and structural designers. The purpose of this research is to design a shear wall and its optimal arrangement in the height of an intermediate reinforced concrete three-dimensional structure. Considering the necessity of preserving the environment and reducing the emission of greenhouse gases, which are mostly made up of carbon gas, the objective function has been formulated based on the reduction of CO2 emission caused by the materials used in the shear wall. On the other hand, in order to optimize the design, CSA meta-heuristic algorithm has been used, and to satisfy the constraints of the problem, the objective function has been used by the penalty method. Also, in order to simplify the search space, a number of shear walls have been pre-designed and discretely coded. In addition, displacement and force constraints have been applied regarding the shear wall and boundary elements so that the design and layout of the walls can be done correctly. In this research, a reinforced concrete moment-resisting frame with a shear wall in seven stories has been modeled and analyzed with the OpenSees software. Based on the optimal design of shear walls, the algorithm was successful in achieving the desired layout by satisfying all constraints.

کلیدواژه‌ها [English]

  • 3D RC structure
  • Meta-heuristic algorithm
  • Optimal design
  • Shear wall layout in height
  • CO2 emissions
[1] Afzal, M., Liu, Y., Cheng, J. C., & Gan, V. J. (2020). Reinforced Concrete Structural Design Optimization: A Critical Review. Journal of Cleaner Production, 260, 120-623.
[2] Ding, G. K. (2008). Sustainable Construction, the Role of Environmental Assessment Tools. Journal of Environmental Management, 86(3), 451-464.
[3] Sepehri, A., Sarrafzadeh, M. H., & Avateffazeli, M. (2020). Interaction Between Chlorella Vulgaris and Nitrifying-Enriched Activated Sludge in the Treatment of Wastewater With Low C/N Ratio. Journal of Cleaner Production, 247, 119-164.
[4] Gan, V. J., Lo, I. M., Ma, J., Tse, K. T., Cheng, J. C., & Chan, C. M. (2020). Simulation Optimization towards Energy Efficient Green Buildings: Current Status and Future Trends. Journal of Cleaner Production, 254, 120012.
[5] Akhavan Kazemi, M., Hoseini Vaez, S. R., & Fathali, M. A. (2022). An Eco-Friendly Reliability-Based Design Optimization of Intermediate Reinforced Concrete Moment Frames. European Journal of Environmental and Civil Engineering, 1-21.‏
[6] Seify Asghshahr, M. (2021). Design Optimization of Corroded Reinforced Concrete Frame using Genetic Algorithm. Journal of Structural and Construction Engineering, 8(8).
[7] Kheyroddin, A. and Emami, E. (2016). Shear Wall Based on ACI 318-2014 & Iranian National Building Code (Chapter 9). Semnan: Semnan University, 499-522 (Chapter 5).
[8] Terzidis, K. (2007). Auto PLAN: A Stochastic Generator of Architectural Plans from a Building Program. Digital Media and the Creative Process, 2008.
[9] Lai, H. J. (1988). Hamiltonian Line Graphs. Journal of graph theory, 12(1), 11-15.
[10] Peng, C. H., Yang, Y. L., Bao, F., Fink, D., Yan, D. M., Wonka, P., & Mitra, N. J. (2016). Computational Network Design from Functional Specifications. ACM Transactions on Graphics (TOG), 35(4), 1-12.
[11] Shekhawat, K. (2014). Algorithm for Constructing an Optimally Connected Rectangular Floor Plan. Frontiers of Architectural Research, 3(3), 324-330.
[12] Stiny, G. (2006). Shape: Talking about Seeing and Doing. MIT Press, Cambridge, MA.
[13] Aminnia, M., & Hosseini, M. (2015). The Effects of Placement and Cross-Section Shape of Shear Walls in Multi-Story RC Buildings with Plan Irregularity on Their Seismic Behavior by Using Nonlinear Time History Analyses. International Journal of Civil and Environmental Engineering, 9(10), 1327-1334.
[14] Kheyroddin, A., Nematpour A., (2012). Optimal Location of Concrete Shear Walls in Steel Structures Using Genetic Algorithm, Master Science, Semnan University, Faculty of Civil Engineering.
[15] Zhang, Y., & Mueller, C. (2017). Shear Wall Layout Optimization for Conceptual Design of Tall Buildings. Engineering Structures, 140, 225-240.
[16] Kulkarni, A. (2016). Assessment of Location and Optimum Percentage of Shear Wall for Typical Plans. International Journal of Engineering Development and Research, 12(3), 41-47
[17] Abdullah, S., & Nandhakumar, P. (2018). Analytical Design for Optimization of Shear Wall for Flat Slab. International Research Journal of Engineering and Technology (IRJET), 4(5), 1335-1338.
[18] Nikzad, H., & Yoshitomi, S. (2018). Practical Design Procedures of 3D Reinforced Concrete Shear Wall-Frame Structure Based on Structural Optimization Method. International Science Index, Urban and Civil Engineering, 12(6).
[19] Dehnavipour, H., Meshki, H., & Naderpour, H. (2021). Torsion-Based Layout Optimization of Shear Walls Using Multi-Objective Water Cycle Algorithm. Advances in Structural Engineering, 24(13), 3030-3042.
[20] Talatahari, S., & Rabiei, M. (2020). Shear Wall Layout Optimization of Tall Buildings Using Quantum Charged System Search. Frontiers of Structural and Civil Engineering, 14(5), 1131-1151.
[21] Lou, H., Gao, B., Jin, F., Wan, Y., & Wang, Y. (2021). Shear Wall Layout Optimization Strategy for High-Rise Buildings Based on Conceptual Design and Data-Driven Tabu Search. Computers & Structures, 250, 106546.
[22] Pizarro, P. N., Massone, L. M., Rojas, F. R., & Ruiz, R. O. (2021). Use of Convolutional Networks in the Conceptual Structural Design of Shear Wall Buildings Layout. Engineering Structures, 239, 112311.
[23] American Concrete Institute. Committee 318. (2019). Residential Code Requirements for Structural Concrete (ACI 318-19) and Commentary: An ACI Standard. American Concrete Institute.
[24] Hoseini Vaez, S. R., & Shahmoradi Qomi, H. (2018). Bar Layout and Weight Optimization of Special RC Shear Wall. Structures Elsevier, 14(1), 153-163.
[25] Emami, S., Parsa, J., Emami, H. (2021). Evaluating Cracks in Concrete Dams using Meta-heuristic Algorithms and Artificial Neural Networks. Journal of Structural and Construction Engineering, 8(Special Issue 2).
 [26] Askarzadeh, A. (2016). A Novel Metaheuristic Method for Solving Constrained Engineering Optimization Problems: Crow Search Algorithm. Computers & Structures, 169, 1-12.
[27] McKenna, F., Fenves, G. L., & Scott, M. H. (2000). Open system for earthquake engineering simulation. University of California, Berkeley, CA.