بررسی خواص مکانیکی و دوام یخ زدگی بتن رنگی زرد با نسبت‌های مختلف وزنی پیگمنت گِل ماش (لیمونیت)

نوع مقاله : علمی - پژوهشی

نویسندگان

1 مربی، دانشکده مهندسی عمران، ، دانشگاه فنی و حرفه ای، تهران، ایران

2 استادیار، دانشکده مهندسی عمران، دانشگاه آزاد اسلامی واحد فیروزآباد مرکز میمند، میمند، ایران

3 استادیار، گروه مهندسی عمران، دانشگاه آزاد اسلامی واحد سپیدان، فارس، ایران

4 مربی، گروه مهندسی عمران، دانشگاه فنی و حرفه‌ای، تهران، ایران

چکیده

بکارگیری طیف‌های رنگی در فضای شهری را می‌توان در نمای ساختمان‌ها، کفسازی، مبلمان شهری، پیاده‌روها و خیابان دید. استفاده از بتن رنگی جهت اجرای نماسازی و طراحی دکوراسیون به دلایل بسیاری می‌تواند مورد استقبال قرار گیرد. همچنین این روش باعث می‌شود نیازی به استفاده از مصالح دیگر برای پوشش کار نباشد که در اینصورت هزینه‌های نماکاری به ‌صورت چشمگیر کاهش می‌یابد. اما تغییرات دمایی و چرخه ذوب و انجماد در شرایط محیطی ناپایدار یکی از عوامل خرابی بتن است. بنابراین بتن رنگی علاوه بر زیبایی باید در برابر شرایط محیطی و جوی مختلف مقاوم باشد. رنگ زرد یکی از سه رنگ اصلی در چرخه رنگ است. در معماری، رنگ زرد رنگی کاربردی است و به دلیل نور زیادی که منعکس می‌کند فضاها را روشن و بزرگ جلوه می‌دهد. پیگمنت گل ماش یا همان لیمونیت نوعی خاک معدنی است که دارای مقدار زیادی اکسید آهن می‌باشد. این پیگمنت به رنگ‌های زرد مات یا خردلی یافت می‌شود. در این تحقیق برای تغییر رنگ بتن به زرد، از سیمان سفید و پیگمنت لیمونیت در نسبت‌های مختلف وزنی 5%، 10%، 15% و 20% در بتن استفاده گردید. در ادامه برای بررسی رفتار و دوام بتن آزمایش‌های مقاومت فشاری، جذب آب در بتن سخت شده و دوام ذوب و انجماد مورد بررسی قرار گرفت. نتایج این تحقیق نشان داد که میزان رنگ پذیری 5% و 10% لیمونیت در بتن باعث ایجاد رنگ نخودی و کرمی و استفاده از 15% و 20% باعث ایجاد رنگ زرد خواهد شد. همچنین استفاده از 10% لیمونیت در بتن مقاومت فشاری 28 روزه را تا 8% افزایش داد. اما بدلیل جذب آب بالای لیمونیت، دوام یخ زدگی آن در مقایسه با نمونه شاهد کاهش یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating The Mechanical Properties And Freezing Durability Of Yellow Colored Concrete With Different Weight Ratios Of Mush Clay Pigment (Limonite)

نویسندگان [English]

  • amirhossein bazaee 1
  • Babak Mansoori 2
  • roozbeh aghamajidi 3
  • Mahmoudreza Golshan 4
1 Instructor, Faculty of Civil Engineering, Technical and Vocational University (TVU), Tehran, Iran
2 Assistant Professor, Faculty of Civil Engineering, Islamic Azad University, Firoozabad Branch, Meymand Center, Meymand, Iran
3 Assistant Professor, Department Of Civil Engineering, Islamic Azad University, Sepidan Branch, Fars, Iran.
4 Instructor, Department Of Civil Engineering, Faculty Of Engineering, Technical And Vocational University (TVU), Tehran, Iran.
چکیده [English]

The Use Of Color Spectrums In The Urban Space Can Be Seen In The Facades Of Buildings, Flooring, Urban Furniture, Sidewalks And Streets. The Use Of Colored Concrete For Facade Construction And Decoration Design Can Be Welcomed For Many Reasons. Also, This Method Does Not Require The Use Of Other Materials To Cover The Work, In Which Case The Costs Of Facade Work Will Be Significantly Reduced. But Temperature Changes And The Cycle Of Melting And Freezing In Unstable Environmental Conditions Is One Of The Factors Of Concrete Failure. Therefore, In Addition To Beauty, Colored Concrete Must Be Resistant To Different Environmental And Atmospheric Conditions. Yellow Is One Of The Three Main Colors In The Color Wheel. In Architecture, Yellow Is A Practical Color And It Makes Spaces Appear Bright And Large Due To The Large Amount Of Light It Reflects. The Pigment Of Mung Bean Or Limonite Is A Type Of Mineral Soil That Has A Large Amount Of Iron Oxide. This Pigment Is Found In Dull Yellow Or Mustard Colors. In This Research, To Change The Color Of Concrete To Yellow, White Cement And Limonite Pigment Were Used In Different Weight Ratios Of 5%, 10%, 15% And 20% In Concrete. Further, To Check The Behavior And Durability Of Concrete, Compressive Strength Tests, Water Absorption In Hardened Concrete, And Durability Of Melting And Freezing Were Investigated. The Results Of This Research Showed That The Colorability Of 5% And 10% Limonite In Concrete Will Cause Pea And Cream Color And The Use Of 15% And 20% Will Cause Yellow Color. Also, The Use Of 10% Limonite In Concrete Increased The 28-Day Compressive Strength By 8%. But Due To The High Water Absorption Of Limonite, Its Freezing Durability Decreased Compared To The Control Sample.

کلیدواژه‌ها [English]

  • Colored Concrete
  • Yellow Concrete
  • Limonite
  • Mash Clay Pigment
  • Concrete Facade
  • r. Marcello, s. Galato, m. Peterson, h.g. Riella, a.m. (2018). Bernardin, inorganic pigments made from the recycling of coal mine drainage treatment sludge, j.environ. Manag. 1280–1294.
  • d.a. Silva, c.d. Castro, e.m. Viganico, c.o. Peter, (2020). Selective precipitation/uv production of magnetite particles obtained from the iron recovered from acid mine drainage, miner. Eng. 22–37.
  • a. Dominguez, r. Ullmann, (2016). Ecological bricks made with clays and steel dust pollutants, appl. Clay sci. 237–250.
  • Essaidi, b. Samet, s. Baklouti, s. Rossignol, (2019). The role of hematite in alumi nosilicate gels based on metakaolin. Canadian geotechnical journal. 1–11.
  • Hosseini-zori, f. Bondioli, t. Manfredini, e. Taheri-nassaj, (2018). Effect of synthesis parameters on a hematite-silica red pigment obtained using a coprecipitation route, dyes pigment. Marine georesources & geotechnology 53–58.
  • Patakfalvi, i. Dékány, (2014). Synthesis and intercalation of silver nanoparticles in kaolinite/dmso complexes, appl. American society of civil engineers 149–159.
  • Okada, n. Watanabe, v.k. Jha, y. Kameshima, a. Yasumori, k.j.d. Mackenzie, (2013). Uptake of various cations by amorphous caal2si2o8 prepared by solid-state reaction of kaolinite with caco, panamerican conference on soil mechanics and geotechnical engineering, buenos aires. 550–565.
  • a. Gruber, t. Ramlochan, a. Boddy, r.d. Hooton, m.d.a. (2011). Thomas, increasing concrete durability with high-reactivity metakaolin international journal of physical modelling in geotechnics. 479–484.
  • d. Vu, p. Stroeven, v.b. Bui, (2010). Strength and durability aspects of calcined kaolin-blended portland cement mortar and concrete, structural safety. 471–478.
  • s. Lee, h.y. Song, y.s. Lee, k.p. Lee, (2021). A study on the strength and flowing properties of the non-cement inorganic composite by using blast furnace slag and red mud, adv. Mater. Res. 491–495.
  • a, elsherabi.c, (2019). Investigating color stability in mortar and concrete, journal of constructional concrete research. 602-620.
  • s, gradio.a, (2019). Color and semi-pigment characteristics of metakaolinite and hematite for colored concrete, journal of constructional concrete research. 890-905.
  • r, grati.o, (2018). Investigating and preparing the production of colored concrete floors to replace the asphalt on the roofs of buildings, cem. Concr. Res. 410–429.
  • m. Mayes, a.p. Jarvis, i.t. Burke, m. Walton, v. Feigl, o. Klebercz, k. Gruiz, (2011). Dispersal and attenuation of trace contaminants downstream of the ajka bauxite residue (yellow mud) depository failure, hungary, environ. Sci. Technol. 5147–5155.
  • Ghalehnovi, a. Khodabakhshian, j. De brito, e.a. Shamsabadi,(2018). Durability performance of structural concrete containing silica fume and marble industry waste powder, j. Cleaner prod. 42–60.
  • m, mohamadi.h, (1395). Review of the advantages and disadvantages of colored concrete, 8th national concrete conference.
  • h, alizadeh.h, (1393). Investigating the effect of powder pigments on the properties of colored concrete, the third congress of new concrete technologies.
  • m, bazaee.a, (1393). A case study regarding the construction of colored self-compacting concrete for the memorial element of the anonymous martyrs, the 10th international conference on civil engineering and architecture.
  • a, oji.f, (1390). Investigating the effect of powder pigments on the mechanical properties, durability and aesthetics of colored concrete, the 7th concrete congress and new achievements in construction materials.
  • Vishwakarma, d. Ramachandran,(2018). Green concrete mix using solid waste and nanoparticles as alternatives–a review, constr. Build. Mater. 96– 103.
  • Pera, r. Boumaza, j. Ambroise, (2017). Development of a pozzolanic pigment from red mud, cem. Concr. Res. 1513–1522.
  • Pan, l. Cheng, y. Lu, n. Yang, (2012). Hydration products of alkali-activated slag–red mud cementitious material, cem. Concr. Res. 357–362.
  • Liu, n. Zhang, h. Sun, j. Zhang, l. Li, (2011). Structural investigation relating to the cementitious activity of bauxite residue—red mud, cem. Concr. Res. 847–853.
  • Senff, d. Hotza, j. Labrincha, (2011). Effect of red mud addition on the rheological behaviour and on hardened state characteristics of cement mortars, constr. Build. Mater. 163–170.
  • v. Ribeiro, j.a. Labrincha, m.r. Morelli, (2012). Effect of the addition of red mud on the corrosion parameters of reinforced concrete, cem. Concr. Res. 124–133.
  • r. Rathod, n.t. Suryawanshi, p.d. Memade, (2013). Evaluation of the properties of red mud concrete, iosr j. Mech. Civ. Eng. 31–34.
  • m.rm ,dalvand.a, (2013). Statistical and laboratory investigation of the effect of microsilica on the impact resistance of wing strength concrete. 8th national congress of civil engineering, faculty of civil engineering, babol. Iran.
  • e. Elyamany, a.e.m. Abd elmoaty, b. Mohamed, (2018). effect of filler types on physical mechanical and microstructure of self compacting concrete and flow-able concrete, j alex engineering 295–307.
  • EFNARC, (2015). The European Guidelines for Self-Compacting Concrete, European Federation of National Associations Representing for Concrete 63.
  • Figueiras, S. Nunes, J.S. Coutinho, C. Andrade, (2016). Linking fresh and durability properties of paste to SCC mortar, Cement Concr. Compos. 209–226.
  • Turk, (2017). Viscosity and hardened properties of self-compacting mortars with binary and ternary cementitious blends of fly ash and silica fume, Construct. Build. Mater. 326–334.
  • Felekoglu, K. Tosun, B. Baradan, A. Altun, B. Uyulgan, (2013). The effect of fly ash and limestone fillers on the viscosity and compressive strength of self-compacting repair mortars, Cement Concr. Res, 1719-1726.
  • Corinaldesi, S. Monosi, M.L. Ruello, (2012). Influence of inorganic pigments’ addition on the performance of coloured SCC, Construct. Build. Mater. 289–293.
  • Lopez, J.M. Tobes, G. Giaccio, R. Zerbino, (2010). Advantages of mortar-based design for coloured self-compacting concrete, Cement Concr. Compos. 754–761.
  • Collepardi, A. Passuelo, (2008). The best SCC stable, durable, colorable, in Proceedings of the 4th Int’l ACI/CANMET Conference on Quality of Concrete Structures and Recent Advances in Concrete Materials and Testing, FURNAS Centrais El´etricas S. A. - Civil Engineering Technological Center, Brazil.
  • Schopwinkel, R. Tebbe, German Standard DIN 53 237. (2006), pigments for colouring cement-based and lime-based building materials, in: Proceedings of the 2nd Int’l Workshop on Concrete Block Paving, Bayer AG, Germany. 306–318.
  • M. Veit, E. Konnecke, (2011). Suggestions for improving coloured concrete products (orig. title: vorschl¨age zur Verbesserung farbiger Betonwaren), Concr Precasting Plant and Technology 1–9.
  • M. Bruce, G.H. Rowe, (2011), The influence of pigments on mix designs for block paving units, in: Proceedings of the 4th Int’l Conference on Concrete Block Paving, Pave New Zealand, New Zealand, 117–124.
  • A. Legodi, D. de Waal, (2007), The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste, Dyes Pigments 161–168.
  • E. Jungk, A.M. Veit, (2005), Colouring of concrete blocks, the state of an art, in: Proceedings of 3rd Int’l Conference on Concrete Block Paving, Germany, 273–275.
  • V. Szadkowski, (2003), The effect of pigments on the quality of concrete blocks, in: Proceedings of the 1st Int’l Conference on Concrete Block Paving, Germanym 155–156.
  • Astm c136, (2014). Standard test method for sieve analysis of fine and coarse aggregates, astm international, west conshohocken, u.s.a.
  • Astm c666,(2019). Standard test method for resistance of concrete to rapid freezing and thawing., u.s.a.
  • Astm c496,(2019). Standard test method for splitting tensile strength of cylindrical concrete specimens, astm international, west conshohocken, u.s.a.
  • Astm c109/c109m-20, standard test method for compressive strength of hydraulic cement mortars (using 2-in. Or [100-mm] cube specimens)
  • Physical and chemical properties of neyriz white cement. neyrizcement.ir (in persian)
  • Physicochemical properties of normal carboxylate based superplasticizer super plast sp400. sivanland.com (in persian)
  • Physical and chemical properties of pigment mash (limonite). powder-delijan.ir (in persian)