بررسی تجربی خواص مهندسی بتن پوزولانی تقویت شده با الیاف و ارزیابی اثر ضربه برآن : مطالعه موردی پوزولان معدنی محلی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی عمران، گروه مهندسی عمران، ‌واحد خرم‌آباد، دانشگاه آزاد اسلامی، خرم‌آباد، ایران

2 1-استاد، استاد مدعو ‌گروه مهندسی عمران، واحد خرم‌آباد، دانشگاه آزاد اسلامی‌ ، خرم‌آباد، ایران2-استاد، هیئت علمی‌گروه مهندسی

3 استادیار، گروه مهندسی عمران، ‌واحد خرم‌آباد، دانشگاه آزاد اسلامی، خرم‌آباد، ایران.

4 استادیار، گروه مهندسی عمران،واحد خرم‌آباد، دانشگاه آزاد اسلامی، خرم‌آباد، ایران

چکیده

یکی از بحران های پیش روی بشر آسیب به محیط زیست است. عدم مدیریت و توجه کافی به انتشار گازهای گلخانه ای حیات انسان بر کره زمین را تهدید می کند. با توجه به انتشار گاز گلخانه ای CO2 ناشی از تولید سیمان، یافتن راهی جهت کاهش مصرف سیمان در بتن بعنوان پرمصرف ترین مصالح ساختمانی، اولویت دارد. در این مقاله یک پوزولان طبیعی از ایران با خواص فیزیکی و شیمیایی مناسب برای جایگزینی بخشی از سیمان در بتن معرفی و خواص مهندسی آن بررسی شد. برای تقویت مقاومت آن، الیاف فولادی و پلی پروپیلن به صورت جداگانه و هیبرید با پوزولان معدنی جدید در بتن استفاده شد. با توجه به بررسی و بهینه سازیهای قبلی، پوزولان معدنی با کسر وزنی 15 درصد سیمان در بتن استفاده شد. مقایسه میزان مقاومت نمونه‌های پوزولان معدنی محلی با سایر بتن‌های پوزولانی مشهور نشان داد که بتن با پوزولان محلی، مقاومتر از بتن سیمانی معمولی می باشد. همچنین، بتن حاوی الیاف فولادی و پوزولان محلی از مقاومت فشاری بیشتری نسبت به سایر نمونه ها برخوردار است. نمونه های بتن پوزولانی حاوی ترکیبی از الیاف فولادی و پلی پروپیلن عملکرد بهتری در مقاومت خمشی نسبت به نمونه های دیگر داشتند و چقرمگی ضربه ای این نمونه ها نیز نسبت به سایر نمونه ها بهتر بوده است. بررسی ها نشان داد مقاومت ضربه ای نمونه های حاوی پوزولان معدنی محلی نسبت به بتن سیمانی معمولی در 28 و 90روز به ترتیب 3.75 و 8.33 درصد بیشتر بوده است. نتایج آزمونها بصورت کلی بیان می دارد پوزولان معدنی محلی مورد مطالعه، می تواند گزینه مناسبی برای جایگزینی بخشی از سیمان در بتن باشد و ضمن بهبود مشخصات مهندسی بتن، نه تنها مصرف سیمان را تا حد زیادی کاهش دهد که یافته ای ارزشمند برای حفاظت از محیط زیست و ساخت و تولید بتن سبز است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental study of engineering properties of fiber-reinforced pozzolanic concrete and evaluation of impact effect on it: A case study of local mineral pozzolan

نویسندگان [English]

  • Mojtaba Rangrazian 1
  • Rahmat Madandoust 2
  • Reza Mahjoub 3
  • Mehdi Raftari 4
1 PhD candidate in Structural Engineering, Department of Civil Engineering, , Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
2 1-Full Professor, Visiting Professor, Department of Civil Engineering, Faculty of Engineering, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran. 2-Full Professor, Department of Civil Engineering, University of Guilan, Rasht, Iran
3 Assistant professor, Department of Civil Engineering, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
4 Assistant professor, Department of Civil Engineering, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
چکیده [English]

One of the crises facing humanity is damage to the environment. Inadequate management and attention to greenhouse gas emissions threaten human life on Earth. Given the CO2 emissions from cement production, finding a way to reduce cement consumption in concrete as the most widely used building material is a priority. In this paper, a natural pozzolan from Iran with suitable physical and chemical properties for replacing part of cement in concrete was introduced and its engineering properties were investigated. To strengthen its strength, steel and polypropylene fibers were used separately and hybrids with new mineral pozzolans were used in concrete. According to previous studies and optimizations, mineral pozzolan with a weight fraction of 15% cement in concrete was used. A comparison of the strength of local mineral pozzolan samples with other famous pozzolanic concretes showed that concrete with local pozzolan is more resistant than ordinary cement concrete. Also, concrete containing steel fibers and local pozzolan has higher compressive strength than other samples. Pozzolanic concrete samples containing a combination of steel fibers and polypropylene had better performance in flexural strength than other samples and the impact toughness of these samples was better than other samples. Investigations showed that the impact resistance of samples containing local mineral pozzolans was 3.75 and 8.33% higher than conventional cement concrete at 28 and 90 days, respectively. The test results generally indicate that the local mineral pozzolans studied can be a good option to replace part of the cement in concrete and while improving the engineering properties of concrete, not only greatly reduce cement consumption but also a valuable finding for environmental protection. Biology, construction, and production of green concrete.

کلیدواژه‌ها [English]

  • Pozzolanic concrete
  • Fiber concrete
  • Greenhouse gas
  • Impact effect
  • Drop weight Impact
  • SEM
.1    Sekoai P.T., Y.K.O., Biofuel Development Initiatives in Sub-Saharan Africa: Opportunities and Challenges. Climate, 2016. 4(2).
. 2   Kang Y., K.S., Ma X., Climate change impacts on crop yield, crop water productivity and food security – A review. 2009. 19:(12) p. 1665-1674.
. 3   Stocker T.F., Q.D., Plattner G., Tignor M., Allen S., The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. The Physical Science Basis, 2013(Cambridge University Press): p. 1535PP.
. 4   Rahimpour M.R., F.M., Makarem M.A., Advances in Carbon Capture : Methods, Technologies and Applications. 1st Edition ed. Chapter 1 - CO2 emission sources, greenhouse gases, and the global warming effect, ed. M.O.D. Kelvin O.Yoro. 2020: Elsevier Science, 2020. 570.
. 5   Worrell E., P.L., Martin N., Hendriks C.,Meida L., Carbon dioxide emissions from the global cement industry. Annu. Rev. Energy Environ, 2001. 26: p. 303-329.
. 6   Izumi Y., I.A., Ho H.J., Calculation of greenhouse gas emissions for a carbon recycling system using mineral carbon capture and utilization technology in the cement industry. Journal of Cleaner Production, 2021. 312.
. 7   Hanein T., G.-M.J., Bannerman M., Carbon footprint of calcium sulfoaluminate clinker production. Journal of Cleaner Production, 2018. 172: p. 2278-2287.
. 8   Cobîrzan N., B.A.A., Moşonyi E., Investigation of the natural pozzolans for usage in cement industry. Procedia Technol, 2015. 19: p. 506-511.
. 9   Jacoby P.C., P.F., Pozzolanic effect of porcelain polishing residue in Portland cement. Journal of Cleaner Production, 2015. 100: p. 84-88.
. 10  Senhadji Y., E.G., Mouli M., Khelafi H., Benosman, Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar. Powder Technology, 2014. 254: p. 314-323.
. 11  Thomas B.S., Y.J., Hung Mo K., Abdalla J., Hawileh R., Ariyachandra E., Biomass ashes from agricultural wastes as supplementary cementitious materials or aggregate replacement in cement/geopolymer concrete: A comprehensive review. Journal of Building Engineering, 2021. 40.
. 12  Wu L., X.F., Zhao P., Qiu Y., Fabrication, Tensile and Bending Properties of Wheat Straw/Polylactic Acid Green Composites. Advanced Materials Research, 2013 :627 .p. 715-721.
. 13  Christopher F., B.A., Ahmed S., Structure and properties of mortar and concrete with rice husk ash as partial replacement of ordinary Portland cement – A review. International Journal of Sustainable Built Environment, 2017. 6(2): p. 675-692.
. 14  Muralidhar Kamath, S.P., Mithesh Kumar, Micro-characterisation of alkali activated paste with fly ash-GGBSmetakaolin binder system with ambient setting characteristics. Construction and Building Materials, 2021. 277.
. 15  Alyousef R., M.H., Tahir M.Md., Alabduljabbar H., Green concrete composites production comprising metalized plastic waste fibers and palm oil fuel ash. Materials Today: Proceedings, 2021. 39: p. 911-916.
. 16  Ranjbar M.K., M.R., Mousavi Y., Yosefi S., Effects of natural zeolite on the fresh and hardened properties of self-compacted concrete. Construction and Building Materials, 2013. 47: p. 806-813.
. 17  Nie CZ. Q., Z.C., Shu X., He Q., Huang B., Chemical, Mechanical, and Durability Properties of Concrete with Local Mineral Admixtures under Sulfate Environment in Northwest China. materials, 2014. 7(5).
. 18  Gökçe H., H.D., Ramyar K., Effect of fly ash and silica fume on hardened properties of foam concrete. Construction and Building Materials, 2019. 194: p. 1-11.
. 19  Song H., S.V., Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag—An overview. Journal of Hazardous Materials, 2006. 138(2): p. 226-233.
. 20  Kwan A.K.H., C.J.J., Adding fly ash microsphere to improve packing density, flowability and strength of cement paste. Powder Technology, 2013. 234: p. 19-25.
. 21  Shi B., W.Z., Liu P., Zhou F., Peng Ch., Pozzolanicity verification of combustion metamorphic rocks from coalfield fire zones in China. Journal of Loss Prevention in the Process Industries, 2021. 69.
. 22  Rashiddadash P., R.A.A., Mahdikhani M., Experimental investigation on flexural toughness of hybrid fiber reinforced concrete (HFRC) containing metakaolin and pumice. Construction and Building Materials, 2014. 51: p. 313–320.
. 23  Akcay B., T.M.A., Performance evaluation of silica fume and metakaolin with identical finenesses in self compacting and fiber reinforced concretes. Construction and Building Materials, 2018. 185: p. 436-444.
. 24  Jun Feng , W.S., Hongzhou Zhai, Lei Wang, Haolin Dong , Qi Wu, Experimental Study on Hybrid Effect Evaluation of Fiber Reinforced Concrete Subjected to Drop Weight Impacts. Materials, 2018. 11(12).
. 25  Afroz M., V.S., Patnaikuni I., Effects of hybrid fibers on the development of high volume fly ash cement composite. Construction and Building Materials, 2019. 215: p. 984-997.
. 26  Nanda R.P., M.A.K., Behera B., Influence of metakaolin and Recron 3s fiber on mechanical properties of fly ash replaced concrete. Construction and Building Materials, 2020. 236: p. 120949.
. 27  Chandak M., P.P.Y., Influence of Metakaolin and steel fibers on stress strain behavior of concrete. Journal of Physics: Conference Series, 2021. 1913.
. 28  Li J., W.J., Wu Ch., Liu Zh., Li j., Hybrid fibre reinforced ultra-high performance concrete beams under static and impact loads. Engineering Structures, 2021. 245: p. 112921.
. 29  Karthik S., R.M.K.S., Murali G., Investigations on the Response of Novel Layered Geopolymer Fibrous Concrete to Drop Weight Impact. buildings, 2022. 12(2).
. 30  BS, Composition, specifications and conformity criteria for common cements, in Cement Part 1. EN 197-1:2011, BSI Standards Publication.
. 31  Liu G., F.M.V.A., Brouwers  H. J. H. , Waste glass as binder in alkali activated slag–fly ash mortars. Materials and Structures, 2019. 52.
. 32  Venkat G.N., C.K., Ahmed E., NagendraBabu V., Comparative study on mechanical properties and quality of concrete by part replacement of cement with silica fume, metakaolin and GGBS by using M−Sand as fine aggregate. Materials Today: Proceedings, 2021. 43.
. 33  Sasui S., K.G., Nam J., Van Riessen A., Nyarko M.H., Effects of waste glass as a sand replacement on the strength and durability of fly ash/GGBS based alkali activated mortar. Ceramics International, 2021. 47(15).
. 34  Chen J.J., N.P.L., Kwan A.K.H., Li  L.G., Lowering cement content in mortar by adding superfine zeolite as cement replacement and optimizing mixture proportions. Cleaner production, 2019. 210: p. 66-76.
. 35  ASTM, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. C618 2014.
. 36  Koirala M., R.J.B., CONSTRUCTION SAND, QUALITY AND SUPPLY MANAGEMENT IN INFRASTRUCTURE PROJECT. International Journal of Advances in Engineering & Scientific Research,, 2017. 14(4).
. 37  BS, Tests for mechanical and physical properties of aggregates, in Part 3: Determination of loose bulk density and voids. EN 1097-3:1998: BSI Standards Publication.
. 38  Xu L., L.Q., Chi Y., Yang Y., Yu M., Yan Y., Axial compressive performance of UHPC filled steel tube stub columns containing steel-polypropylene hybrid fiber. Construction and Building Materials, 2019. 204: p. 754-767.
. 39  ASTM, Standard Specification for Fiber-Reinforced Concrete, in Fiber-Reinforced Concrete -C 1116.2006, ASTM: U.S.
. 40  Alavi Nia A., H.M., Nili M., Afrough Sabet V., An experimental and numerical study on how steel and polypropylene fibers affect the impact resistance in fiber-reinforced concrete. International Journal of Impact Engineering, 2012. 46: p. 62-73.
. 41  BS, Testing hardened concrete in Part 3: Compressive strength of test specimens. EN 12390-3:2009, BSI: UK.
. 42  ASTM, Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete ,C1609, in Using Beam With Third-Point Loading. 2019: U.S.A.
. 43  Surendra P. Shah , J.I.D., Charles H. Henager Sr.,Henry J. Molloy, R. N. Swamy, Claire G. Ball, Antoine E. Naaman, George J. Venta, Gary L. Vondran, Marvin E. Criswell, Charles W. Josifek, Ronald F. Zollo, et al., Measurement of Properties of Fiber Reinforced Concrete, in ACI 544.2R-89. 2009, ACI Committee: U.S.A.
. 44  Yue J.G., W.Y.N., Beskos  D.E., Uniaxial tension damage mechanics of steel fiber reinforced concrete using acoustic emission and machine learning crack mode classification. Cement and Concrete Composites, 2021. 123.
. 45  Alwesabi E.A.H., A.B.B.H., Alshaikh I.M.H., Zeyad A.M., Altheeb A., Alghamdi H., Experimental investigation on fracture characteristics of plain and rubberized concrete containing hybrid steel-polypropylene fiber. Structures, 2021. 33: p. 4421–4432.
. 46  Berkowski P., K.-K.M., Effect of Fiber on the Concrete Resistance to Surface Scaling Due to Cyclic Freezing and Thawing. Procedia Engineering, 2015. 111: p. 121-127.
. 47  Afroughsabet V., O.T., Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Construction and Building Materials, 2015. 94: p. 73-82.
. 48  Yap S.Y., A.U.J., Jumaat M.Z., Enhancement of mechanical properties in polypropylene– and nylon–fibre reinforced oil palm shell concrete. Materials & Design, 2013. 49.
. 49  Khan M.I., A.A.M., Properties of natural pozzolan and its potential utilization in environmental friendly concrete. Canadian Journal of Civil Engineering 2011. 38: p. 71-78.
. 50  Celik K., J.M.D., Mancio M., Meral C., Emwas A.H., Mehta P.K., Monteiro P.J.M., High-volume natural volcanic pozzolan and limestone powder as partial replacements for Portland cement in self-compacting and sustainable concrete. Cement & Concrete Composites, 2014. 45: p. 136-147.
. 51  Ramezanianpour A.A., K.A., Sarvari M., Ahmadi B., Use of Natural Zeolite to Produce Self-Consolidating Concrete with Low Portland Cement Content and High Durability. Journal of Materials in Civil Engineering 2012. 25: p. 589-596.
. 52  Mohamed O.A., N., O.F., Compressive strength and stability of sustainable self-consolidating concrete containing fly ash, silica fume, and GGBS. Frontiers of Structural and Civil Engineering, 2017. 11: p. 406–411.
. 53  Qinghua Li, X.Z., Shilang Xu, Xiang Gao, Influence of steel fiber on dynamic compressive behavior of hybrid fiber ultra high toughness cementitious composites at different strain rates. Construction and Building Materials, 2016. 125: p. 490-500.
. 54  Ostle B, T.K., Hicks CR, Mcelrath GW, Engineering statistics: the industrial experience. New York Duxbury Press 1996.
. 55  Tara Rahmani, B.K., Mohammad Shekarchi, Abdollah Safari, Statistical and experimental analysis on the behavior of fiber reinforced concretes subjected to drop weight test. Construction and Building Materials, 2012. 37: p. 360-369.
. 56  Wang, P.H., Z.; Zhou, D.; Wang, X.; Zhang, C, Impact mechanical properties of concrete reinforced with hybrid carbon fibers. Journal of vibration and shock, 2012. 31: p. 14-18.