روشی ترکیبی برای تحلیل عوامل کلیدی عملکرد بر مبنای علل ایجاد دعاوی در پروژه‌های صنعت ساخت با رویکرد نظریه مجموعه های فازی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشگاه بین‌المللی امام خمینی(ره)، قزوین، ایران

2 گروه مهندسی صنایع، دانشگاه پیام نور، ایران

چکیده

در چرخه حیات پروژه‌های صنعت ساخت‌وساز، عوامل بسیاری نقش دارند که منابع و به تبع آن روابط انسانی محور اصلی پیشرفت فعالیت‌هاست بنابراین تضاد منافع بین ذینفعان در پروژه‌های این صنعت مساله ای بدیهی و چالش برانگیز است. دعاوی از مهم ترین عوامل موثر بر عدم تامین اهداف پروژه هستند. مهم ترین نتیجه ادعاها، تأخیر و سرریز هزینه‌ها در پروژه‌های صنعت ساخت است. از این رو در این تحقیق سعی شده است تا با رتبه‌بندی علل ایجاد دعاوی و تحلیل اثرات آنها بر شاخص‌های کلیدی عملکرد، گامی جهت بهبود عملکرد پروژه‌ها برداشته شود. در این پژوهش، نخست به شناسایی عوامل ایجاد ادعا در پروژه‌های آبفا و عوامل کلیدی موفقیت در پروژه‌ها پرداخته شده است. سپس با توزیع پرسشنامه بین خبرگان، ضریب اهمیت عوامل کلیدی موفقیت با روش SWARA فازی محاسبه گردید. نتایج وزن‌دهی نشان داد که از بین 10 عامل کلیدی موفقیت، عوامل زمانبندی، ایمنی و سلامت، و هزینه دارای ضریب اهمیت اول تا سوم هستند. در ادامه رتبه‌بندی علل ایجاد ادعا براساس عوامل کلیدی موفقیت و روش TOPSIS فازی انجام گرفت. نتایج نشان داد که عوامل تأخیرات، تغییرات، دستور تسریع، کار اضافی، تغییر شرایط کارگاهی و در نهایت، ابهام در شرایط قراردادی دارای رتبه‌های اهمیت اول تا ششم هستند. نتایج این پژوهش می‌تواند با درنظرگرفتن کلیه عوامل موثر در بروز ادعا،زمینه‌های جلوگیری از هدررفت سرمایه‌های انسانی و فیزیکی و همچنین اتمام به‌موقع و با کیفیت پروژه‌ها را تضمین نماید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Hybrid Method for Analyzing Key Performance Indicators Based on the Causes of Claims in Construction Industry Projects with the Fuzzy set Theory Approach

نویسندگان [English]

  • Ramin Ansari 1
  • Sayyid Ali Banihashemi 2
1 Department of Civil Engineering, Imam Khomeini International University, Qazvin, Iran.
2 Department of Industrial Engineering, Payame Noor University, Iran
چکیده [English]

There are many factors involved in the lifecycle of construction industry projects, among them, resources and consequently human relations are the main criteria of activity development, so the conflict of interest between stakeholders in projects in this industry is an obvious and challenging issue. Claims are one of the most important factors influencing the failure to meet the project objectives. The most important result of claims are delays and overflows in construction industry projects. Therefore, in this research, an attempt has been made to improve the performance of projects by ranking the causes of claims and analyzing their effects on key performance indicators. In this research, first, the factors that create claims in Water and Sewage projects and also the key factors of success in projects have been identified. Then, by distributing the questionnaire among the experts, the importance coefficient of key success factors was calculated by the fuzzy SWARA method. The weighting results showed that among the 10 key factors of success, scheduling factors, safety and health, and cost have the first to third important factors. The causes of claim creation were ranked based on the key success factors and fuzzy TOPSIS method. The results showed that the factors of delays, changes, expediting orders, overtime, changing workshop conditions and finally, ambiguity in contractual terms have the first to sixth important ranks. The results of this research can guarantee the grounds for preventing the loss of human and physical capital, as well as ensuring timely and high-quality project completion, by considering all the effective factors in the occurrence of claims.

کلیدواژه‌ها [English]

  • Construction Industry Projects
  • Performance Management
  • Claim Management
  • FSWARA Method
  • FTOPSIS Method
  • Reid, A., & Ellis, R. C. (2007). Common sense applied to the definition of a dispute. Structural Survey, 25(3/4), 239-252.
  • Hadikusumo, B. H., & Tobgay, S. (2015). Construction claim types and causes for a large-scale hydropower project in Bhutan. Journal of Construction in Developing Countries, 20(1), 49.
  • Semple, C., Hartman, F., & Jergeas, G. (1994). Construction Claims and Disputes: Causes and Cost/Time Journal of Construction Engineering and Management, 120(4), 785-795
  • Jergeas, G. F., & Hartman, F. T. (1994). Contractors' construction-claims avoidance. Journal of Construction Engineering and Management, 120(3), 553-560.
  • Bakhary, N. A., Adnan, H., & Ibrahim, A. (2015). A study of construction claim management problems in Malaysia. Procedia economics and finance, 23, 63-70.
  • Ho, S. P., & Liu, L. Y. (2004). Analytical model for analyzing construction claims and opportunistic bidding. Journal of construction engineering and management, 130(1), 94-104.
  • Kululanga, G. K., Kuotcha, W., McCaffer, R., & Edum-Fotwe, F. (2001). Construction contractors' claim process framework. Journal of Construction Engineering and management, 127(4), 309-314.
  • Shahhosseini, V., & Hajarolasvadi, H. (2021). A conceptual framework for developing a BIM-enabled claim management system. International Journal of Construction Management, 21(2), 208-222.
  • Leon, H., Osman, H., Georgy, M., & Elsaid, M. (2018). System dynamics approach for forecasting performance of construction projects. Journal of Management in Engineering, 34(1), 04017049.
  • Korde, T., Li, M., & Russell, A. D. (2005). State-of-the-art review of construction performance models and factors. In Construction Research Congress 2005: Broadening Perspectives (pp. 1-14).
  • Revay, S. G. (1993). Can construction claims be avoided? Building owners and engineers frequently occurring claims identified. Building Research and Information, 21(1), 56-58.
  • Ip, S. (2002). An overview of construction claims: how they arise and how to avoid them, in: Lorman Seminar for Construction Contracting for Public Entities, Clark Wilson LLP, BC.
  • Zaneldin, E. K. (2006). Construction Claims in United Arab Emirates: Types, Causes, and Frequency. International journal of Project Management, 24(5), 453-459.
  • Chovichien, V., & Tochaiwat, K. (2005). A Survey of Construction Claims and Claim Management Process in Thailand. In Proceedings of The Tenth National Convention on Civil Engineering (pp. 2-4).
  • Hassanein, A. A., & El Nemr, W. (2008). Claims management in the Egyptian industrial construction sector: A contractor's perspective. Engineering, Construction and Architectural Management, 15(3), 246-259.
  • Hayati, K., Latief, Y., & Rarasati, A. D. (2019). Causes and problem identification in construction claim management. In IOP Conference Series: Materials Science and Engineering (Vol. 469, No. 1, p. 012082). IOP Publishing.
  • Yusuwan, N. M., & Adnan, H. (2013). Issues associated with extension of time (EoT) claim in Malaysian construction industry. Procedia Technology, 9, 740-749.
  • Kennerley, M., & Neely, A. (2002). A framework of the factors affecting the evolution of performance measurement systems. International journal of operations & production management, 22(11), 1222-1245.
  • Ward, S. C., Curtis, B., & Chapman, C. B. (1991). Objectives and performance in construction projects. Construction Management and Economics, 9(4), 343-353.
  • Ogunlana, S. O. (2010). Beyond the ‘iron triangle’: Stakeholder perception of key performance indicators (KPIs) for large-scale public sector development projects. International journal of project management, 28(3), 228-236.
  • Neely, A., Mills, J., Platts, K., Richards, H., Gregory, M., Bourne, M., & Kennerley, M. (2000). Performance measurement system design: developing and testing a process‐based approach. International journal of operations & production management, 20(10), 1119-1145.
  • Hwang, B. G., Thomas, S. R., Haas, C. T., & Caldas, C. H. (2009). Measuring the impact of rework on construction cost performance. Journal of construction engineering and management, 135(3), 187-198.
  • Owolabi James, D., Amusan Lekan, M., Oloke, C. O., Olusanya, O., Tunji-Olayeni, P., & Owolabi Dele, P. (2014). Causes and effect of delay on project construction delivery time. International journal of education and research, 2(4), 197-208.
  • Nassar, N., & AbouRizk, S. (2014). Practical application for integrated performance measurement of construction projects. Journal of Management in Engineering, 30(6), 04014027.
  • Wibowo, M. A., Astana, I. N. Y., & Rusdi, H. A. (2017). Dynamic modelling of the relation between bidding strategy and construction project performance. Procedia Engineering, 171, 341-347.
  • Sun, M., & Meng, X. (2009). Taxonomy for change causes and effects in construction projects. International journal of project management, 27(6), 560-572.
  • Bunni, N. G. (2005). The FIDIC forms of contract. 3rd Edition, John Wiley & Sons.
  • Harris, R. A., & Scott, S. (2001). UK practice in dealing with claims for delay. Engineering, Construction and architectural management. 8(5/6), 317-324.
  • Callahan, M. T. (2010). Construction delay claims. Aspen publishers.
  • Sanders, D., & Eagles, W. D. (2001). Delay, Disruption and Acceleration Claims. Borden Ladner Gervais LLP, May 2001 scant information.
  • Patil, Y., Bhatt, V., & Kambekar, A. R. (2019). Anatomy of construction claims. Proceedings of Sustainable Infrastructure Development & Management (SIDM). Available at SSRN: https://ssrn.com/abstract=3376142 or http://dx.doi.org/10.2139/ssrn.3376142
  • Moura, H., & Teixeira, J. C. (2007). Types of Construction Claims: A Portuguese Survey. Proceedings of the 23th Annual ARCOM Conference (pp. 129-135). ARCOM: Association of Researchers in Construction Management.
  • Acharya, N. K., Lee, Y. D., & Im. H. M. (2006). Conflicting Factors in Construction Projects: Korean Engineering, Construction and Architectural Management, 13(6), 543-566
  • Chan, E. H. W., & Suen, H. C. H. (2005). Dispute Resolution Management for International Construction Projects in China. Management Decision, 43(4), 589-602
  • Tochaiwat, K., & Chovichien, V. (2006). A Survey of Thai Contractors' Construction Claim Management. Proceedings of The Tenth National Convention on Civil Engineering (pp. 7-11).
  • Keršulienė, V., Zavadskas, E. K., and Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (Swara). Journal of Business Economics and Management, 11(2), 243-258. https://doi.org/10.3846/jbem.2010.12
  • Mavi, R. K., Goh, M., and Zarbakhshnia, N. (2017). Sustainable third-party reverse logistic provider selection with fuzzy SWARA and fuzzy MOORA in plastic industry. The International Journal of Advanced Manufacturing Technology, 91(5-8), 2401-2418.
  • Petrović, G., Mihajlović, J., Ćojbašić, Ž., Madić, M., & Marinković, D. (2019). Comparison of three fuzzy MCDM methods for solving the supplier selection problem. Facta Universitatis, Series: Mechanical Engineering, 17(3), 455-469.
  • Miller, D. M. (1984). Profitability= productivity+ price recovery. Harvard Business Review, 62(3), 145-153.
  • Bernolak, I. (1997). Effective measurement and successful elements of company productivity: the basis of competitiveness and world prosperity. International Journal of Production Economics, 52(1-2), 203-213.
  • Ren, X. (2000). Development of environmental performance indicators for textile process and product. Journal of cleaner production, 8(6), 473-481.
  • Grünberg, T. (2004). Performance improvement: Towards a method for finding and prioritising potential performance improvement areas in manufacturing operations. International journal of productivity and performance management, 53, 59-71.
  • Chan, A. P., & Chan, A. P. (2004). Key performance indicators for measuring construction success. Benchmarking: an international journal, 11(2), 203-221.
  • Tangen, S. (2005). Demystifying productivity and performance. International Journal of Productivity and performance management, 54, 34-46.
  • Park, H. S. (2006). Conceptual framework of construction productivity estimation. KSCE Journal of Civil Engineering, 10(5), 311-317.
  • Bottazzi, G., Secchi, A., & Tamagni, F. (2008). Productivity, profitability and financial performance. Industrial and Corporate Change, 17(4), 711-751.
  • Nasirzadeh, F., Afshar, A., Khanzadi, M., & Howick, S. (2008). Integrating system dynamics and fuzzy logic modelling for construction risk management. Construction Management and Economics, 26(11), 1197-1212.
  • Skibniewski, M. J., & Ghosh, S. (2009). Determination of key performance indicators with enterprise resource planning systems in engineering construction firms. Journal of construction engineering and management, 135(10), 965-978.
  • Bou-Llusar, J. C., Escrig-Tena, A. B., Roca-Puig, V., & Beltrán-Martín, I. (2009). An empirical assessment of the EFQM Excellence Model: Evaluation as a TQM framework relative to the MBNQA Model. Journal of operations management, 27(1), 1-22.
  • Al-Humaidi, H. M., & Tan, F. H. (2010). Construction safety in Kuwait. Journal of Performance of Constructed Facilities, 24(1), 70-77.
  • Ali, A. S., & Rahmat, I. (2010). The performance measurement of construction projects managed by ISO-certified contractors in Malaysia. Journal of Retail & Leisure Property, 9(1), 25-35.
  • Ismail, S., Mohamad, R., & Said, J. M. (2021). Performance indicators for lifecycle process of public private partnership (PPP) projects in Malaysia. Built Environment Project and Asset Management. https://doi.org/10.1108/BEPAM-02-2021-0030.