تشخیص و تخمین خسارات ریز و کوچک در تیرهای فولادی با استفاده از روش های المان محدود طیفی، شاخص انرژی کرنشی مودال و رگرسیون بردار پشتیبان

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری ، گروه مهندسی عمران، دانشکده فنی و مهندسی ،واحد تهران جنوب، دانشگاه آزاد اسالمی، تهران، ایران

2 استادیار گروه مهندسی عمران، دانشکده عمران معماری و هنر، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

3 استادیار، گروه مهندسی عمران،دانشکده فنی و مهندسی، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران

4 دانشیار، گروه مهندسی عمران،دانشکده فنی و مهندسی، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران ، ایران

چکیده

سازه هایی نظیر پلها در طول عمر بهره برداری خود در معرض انواع خسارات ریز و کوچک قرار می گیرند. با توجه به اهمیت و نقش این دسته از سازه ها در حوزه حمل و نقل ، تشخیص به موقع خسارت در آنها از جایگاه ویژه ای برخوردار است. از این رو در این تحقیق یک روش نوین و کارآمد برای تشخیص و تخمین خسارات ریز و کوچک در پل ها ارائه گردیده است. روش ارائه شده بر مبنای ترکیب المان محدود طیفی و شاخص انرژی کرنشی مودال برای تشخیص موقعیت خسارت بوده و از تکنیک رگرسیون بردار پشتیبان جهت تخمین میزان شدت خسارت استفاده شده است. برای مدلسازی المان هشت گره ای جدید که دارای ویژگی های المان محدود طیفی می باشد در نرم افزارOpenSees تعریف گردید. سپس جهت مدلسازی خسارات ریز و کوچک به ترتیب از یک تیر یک دهانه و یک تیر دو دهانه فولادی با تکیه گاه های ارتجاعی استفاده شده است. جهت تشخیص خسارات در گام اول پس از تحلیل مودال سازه ها به محاسبه شاخص انرژی کرنشی مودال پرداخته تا موقعیت خسارات در سازه تشخیص داده شود. در گام دوم با استفاده از شاخص های انرژی کرنشی مودال محاسبه شده در گام قبل به آموزش شبکه های رگرسیون بردار پشتیبان برای تخمین میزان شدت خسارات پرداخته می شود. نتایج کاربرد روش دو مرحله ای ارائه شده نشان دهنده دقت مناسب و عملکرد مطلوب آن می باشد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Detection of the micro and small scale damages in steel beams using spectral finite element methods, modal strain energy-based damage index, and support vector regression

نویسندگان [English]

  • Mohammad Vahidi 1
  • Armin Aziminejad 2
  • Maryam Firoozi Nezamabadi 3
  • Mahmoud Heristchian 4
1 PhD candidate, Department of Civil Engineering,,Faculty of Engineering,, South Tehran Branch, Islamic Azad University, Tehran, Iran
2 Assistant professor, Department of Civil Engineering, ,Faculty of civil engineering, architecture and art, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 Assistant professor, Department of civil engineering and research center for modeling and optimization in science and engineering, , Faculty of engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
4 Associate professor, Department of Civil Engineering, Faculty of engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Bridges are exposed to various micro and small damages during their service life. Due to the importance and role of these structures in transportation on roads, timely detection of damages in them has a special place. This research presents an innovative and efficient method for diagnosing and estimating micro and small damages to bridges. The proposed method is based on the combination of spectral finite element and modal strain energy-based damage index to determine the location of damages in the first step. Then the support vector regression technique is used to estimate the severity of damages in the second step. A new eight-node element with spectral finite element characteristics is defined in OpenSees software. Then, micro and small damages are modeled in a single-span beam and a double-span steel beam with spring supports. In the first step, after modal analysis of the structures, the modal strain energy-based damage index is calculated to determine the location of the damages. In the second step, using the modal strain energy-based damage indices calculated in the previous step, the support vector regression networks are trained to estimate the severity of the damages. The results show very high accuracy and optimal performance of the proposed method.

کلیدواژه‌ها [English]

  • Damage detection
  • Spectral finite element
  • Modal strain energy index
  • Steel beam
  • Support vector regression
[1] Le, N. T.,Thambiratnam, D. P.,Nguyen, A. , Chan, THT.(2019). A new method for locating and quantifying damage in beams from static deflection changes. Engineering Structures,Vol.180, pp. 779-792.
[2]  Nguyen, K-D., Chan, T. H. T., Thambiratnam, DP.(2016). Structural damage identification based on change in geometric modal strain energy–eigenvalue ratio. Smart Materials and Structures,Vol. 25,(7):075032.
 
 
 
[3] Stubbs, N., Kim, J.T. and Farrar, C.R. (1995). Field verification of a nondestructive damage localiza- tion and severity estimation algorithm. Proceedings of 13th International Modal Analysis Conference, Vol.1, pp. 210–218.
[4] Stubbs, N. and Kim, J.T. (1996). Damage localization in structures without baseline modal parameters. AIAA Journal,Vol. 34, pp. 1644–1649.
[5]  Farrar, C.R. and Jauregui, D.A. (1998). Comparative study of damage identification algorithms applied to a bridge: II. Numerical study. Smart Materials & Structures,Vol. 7, pp. 720–731.
[6]  Shih, HW., Thambiratnam, DP., Chan, THT. (2009). Vibration based structural damage detection in flexural members using multi-criteria approach. Journal of Sound and Vibration,Vol. 323 ,pp. 645-661.
[7] Seyedpoor, SM. (2012). A two-stage method for structural damage detection using a modal strain energy-based index and particle swarm optimization. International Journal of Non-Linear Mechanics,Vol. 47,pp. 1-8.
[8]  Tan, Z., Thambiratnam, D., Chan, T., Razak, HA.(2017). Detecting damage in steel beams using modal strain energy-based damage index and Artificial Neural Network. Engineering Failure Analysis,Vol. 79, pp.253-262.
[9]  Nick, H., Aziminejad, A., Hamid, Hosseini M., Laknejadi, K.( 2021). Damage identification in steel girder bridges using modal strain energy-based damage index method and artificial neural network. Engineering Failure Analysis,Vol. 119, 105010.
[10]  Nick, H., Aziminejad, A.( 2021). Vibration ‑ Based Damage Identification in Steel Girder Bridges Using Artificial Neural Network Under Noisy Conditions. Journal of Nondestructive Evaluation,Vol.40, pp.1–22.
[11]  Eraky, A., Anwar, AM., Saad, A., Abdo, A.(2015). Damage detection of flexural structural systems using damage index method–Experimental approach. Alexandria Engineering Journal, Vol.54, pp.497-507.
[12]  Kim, J-T., Ryu, Y-S., Cho, H-M., Stubbs, N. (2003).Damage identification in beam-type structures: frequency-based method vs mode-shape-based method. Engineering structures,Vol.25,pp.57-67.
[13]  Ooijevaar, T., Loendersloot, R., Warnet, L., de Boer, A., Akkerman, R.( 2010). Vibration based Structural Health Monitoring of a composite T-beam. Composite Structures,Vol.92, pp.2007-2015.
[14] Entezami, A., Shariatmadar, H.(2014). Damage detection in structural systems by improved sensitivity of modal strain energy and Tikhonov regularization method. Int J Dynam Control,Vol.2pp.509-20.
[15] Radzieński, M., Krawczuk, M., Palacz, M. (2011). Improvement of damage detection methods based on experimental modal parameters. Mechanical Systems and Signal Processing, Vol.25,pp.2169-90.
[16] Wahalathantri, BL., Thambiratnam, DP., Chan, THT., Fawzia, S. (2015).Vibration based baseline updating method to localize crack formation and propagation in reinforced concrete members. Journal of Sound and Vibration, Vol. 344,pp. 258-76.
[17]  Niu, J., Zong, Z., Chu, F.(2015). Damage identification method of girder bridges based on finite element model updating and modal strain energy. Sci China Technol Sci, Vol.58,pp.701-11.
 [18] Magalhães, F., Cunha, A., Caetano, E.(2012). Vibration based structural health monitoring of an arch bridge: from automated OMA to damage detection. Mechanical Systems and Signal Processing, Vol. 28,pp.212-228.
[19]  Kim, J-T., Park, J-H., Lee, B-J.(2007). Vibration-based damage monitoring in model plate-girder bridges under uncertain temperature conditions. Engineering Structures, Vol.29,pp.1354-1365.
[20] Teughels, A., De, Roeck G.(2004). Structural damage identification of the highway bridge Z24 by FE model updating. Journal of Sound and Vibration, Vol.278,pp.589-610.
[21] Koto, Y., Konishi, T., Sekiya, H., Miki, C.(2019). Monitoring local damage due to fatigue in plate girder bridge. Journal of Sound and Vibration,Vol. 438,pp.238-250.
[22] Huth, O., Feltrin, G., Maeck, J., Kilic, N., Motavalli, M.(2005). Damage identification using modal data: Experiences on a prestressed concrete bridge. Journal of Structural Engineering, Vol.131,pp.1898-1910.
[23] Caicedo, JM., Dyke, SJ.(2005). Experimental validation of structural health monitoring for flexible bridge structures. Structural Control and Health Monitoring. Vol.12,pp.425–43.
[24] Xiong, W., Kong, B., Tang, P., Ye, J.(2018). Vibration-based identification for the presence of scouring of cable-stayed bridges. Journal of Aerospace Engineering, Vol.31,pp.04018007.
[25]  Kopsaftopoulos, F., Fassois, S.(2010). Vibration based health monitoring for a lightweight truss structure: experimental assessment of several statistical time series methods. Mechanical Systems and Signal Processing, Vol.24,pp.1977-1997.
[26] Vo-Duy, T., Ho-Huu, V., Dang-Trung, H., Nguyen-Thoi, T.(2016). A two-step approach for damage detection in laminated composite structures using modal strain energy method and an improved differential evolution algorithm. Composite Structures, Vol.147,pp.42-53.
[27] Fan, W., Qiao, P.(2012).A strain energy-based damage severity correction factor method for damage identification in plate-type structures. Mechanical Systems and Signal Processing, Vol. 28,pp.660-78.
[28] Cornwell, P., Doebling, SW., Farrar, CR. (1992).Application of the strain energy damage detection method to plate-like structures. Journal of sound and vibration, Vol.224,pp.359-374.
[29] Komatitsh, D. and Tromp, J. (1999). Introduction to the spectral element method for three dimensional seismic wave propagation. Geophys. J. Int.,Vol.139,pp.806-822.
[30] Komatitsch, D., Martin, R., Tromp, J., Taylor, M.A. and Wingate, B. (2001). Wave propagation in 2-D elastic media using a spectral element method with triangles and quadrangles. Journal of computational acoustics, Vol.9,pp. 703-718.
[31] Komatitsch, D., Vilotte, J-P., Vai, R., Castillo-Covarrubias, J.M. and Sanchez-Sesma, F.J. (1999).The spectral element method for elastic wave equation –Application to 2-D and 3-D seismic problems.International journal for numerical methods in engineering,Vol.45,pp.1139-1164.
[32]   Dauksher, W. and Emery, A.F. (2001). The solution of elastostatic and elastodynamic problems with Chebyshev spectral finite elements. Computer methods in applied mechanics and engineering,Vol.188,pp.217-233.
[33] Seriani, G. (2004).Double-grid Chebyshev spectral elements for acoustic wave modeling.  Wave motion, Vol.39,pp.351-360.
[34]  Beskos, D., Narayanan, G. (1983). Dynamic response of frameworks by numerical laplace transform. Computer Methods in Applied Mechanics and Engineering. Vol.37,pp.289-307.
[35] Doebling, S. W., Farrar, C. R., Prime, M. B., and Shevitz, D. W. (1996). Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in their Vibration Characteristics: A Literature Review. Los Alamos National Laboratory report ,LA-13070-MS.
[36]  Krawczuk, Marek. (2002). Application of spectral beam finite element with a crack and iterative search technique for damage detection. Fnite Element in Analysis and Design, Vol.38,pp.537-548.
[37]  Wieslaw M, Ostachowicz W. (2008). Damage detection of structures using Spectral finite element method. Computers and structures. Vol.86,pp.454-462.
[38]  Kudela, P., Krawczuk ,M., Ostachowicz,W. (2007). Wave propagation modelling in 1D structures using spectral finite elements. SOUND AND VIBRATION,Vol.300,pp. 88-100.
[39]  Pandey, A. K., Biswas, M., Samman, M. M.(1991).Damage detection from changes in curvature mode shapes. Journal of Sound and Vibration, Vol. 145(2), pp. 321-332.
[40] Drucker, H., Burges, C.,  Kaufman, L.,  Smola, A., Vapnik, V.N.(1996). Support vector regression machines, Advances in Neural Information Processing Systems. MIT Press, Cambridge, MA,  Vol. 9, pp. 155–161.
[41]  Y. J. Yan, L. H. Yam, L. Cheng, and L. Yu. (2006). FEM modeling method of damage structures for structural damage detection. Composite Structures, Vol.72, pp. 193-199.