اثر درجه آزادی حرکت سرشمع بر روی ظرفیت باربری و ضریب راندمان گروه شمع مجاور شیروانی ماسه‌ای

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری ژئوتکنیک ،گروه مهندسی عمران ، واحد نجف‌آباد، دانشگاه آزاد اسلامی، نجف‌آباد، ایران

2 گروه مهندسی عمران ، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران

3 گروه مهندسی عمران ، واحد نجف‌آباد، دانشگاه آزاد اسلامی، نجف‌آباد، ایران

4 گروه عمران - دانشکده مهندسی - دانشگاه شهید چمران اهواز

چکیده

درک رفتار گروه شمع مجاور شیروانی عامل مهمی در طراحی سازه‌های مجاور شیروانی است. در خصوص ظرفیت باربری قائم و ضریب راندمان گروه شمع مجاور شیروانی تحت بارگذاری قائم تحقیقات بسیار کمی صورت پذیرفته است؛ لذا مطالعه در خصوص رفتار گروه شمع مجاور شیروانی تحت بارگذاری محوری از اهمیت خاصی برخوردار است. هدف از این تحقیق بررسی و مقایسه ظرفیت باربری و ضریب راندمان گروه شمع قائم تحت بارگذاری محوری در مجاورت شیروانی ماسه‌ای در دو حالت آزاد بودن و مقید بودن جابجایی افقی سرشمع به کمک آزمایش‌های مدل فیزیکی می‌باشد. همچنین در این تحقیق، نیروی افقی اعمال‌شده به گروه شمع با حرکت جانبی آزاد به کمک نرم افزار FLAC3D موردبررسی قرار می‌گیرد. به این منظور یک سری آزمایش‌های مدل فیزیکی بر روی گروه‌های شمع 2×2 ،1×2، 1×3 و 3×3 مجاور شیروانی ماسه‌ای خشک که در مقابل جابجایی افقی سرشمع مقید گردیده بود، انجام‌گرفته و نتایج حاصل با تحقیقات قبلی که در آن جابجایی افقی سرشمع آزاد بوده است، مقایسه گردیده است. نتایج حاصل از آزمایش‌های مدل فیزیکی نشان می‌دهد، ظرفیت باربری و ضریب راندمان گروه شمع به عواملی همانند فاصله شمع‌ها، تعداد شمع‌ها و نحوه قرارگیری گروه شمع خطی نسبت به رأس شیروانی بستگی دارد. همچنین نتایج آزمایش‌های مدل فیزیکی نشان می‌دهد، ظرفیت باربری و ضریب راندمان گروه شمع با حرکت جانبی آزاد دارای مقادیر بیشتری نسبت به گروه شمع فاقد حرکت جانبی می‌باشد. نتایج آنالیز عددی نشان می‌دهد نیروی جانبی اعمال‌شده به گروه شمع با افزایش فاصله شمع‌ها کاهش می‌یابد و نسبت نیروی افقی به نیروی محوری در گروه شمع خطی با افزایش تعداد شمع‌ها کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of degree of freedom of movement on the bearing capacity and efficiency coefficient of pile group adjacent to sandy slope

نویسندگان [English]

  • Reza Mohammad-Alinejad 1
  • Meysam Bayat 2
  • Bahram Nadi 3
  • Mohammad Siroos Pakbaz 4
1 PhD student, Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
2 Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
3 Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
4 Faculty of Civil Engineering and Architecture, Shahid Chamran University , Ahvaz, Iran
چکیده [English]

Understanding the behavior of the pile group near the slope is an important factor in designing a structure adjacent to the slope. There are very little research on the vertical capacity and efficiency coefficients of pile group near slope, so the study about the behavior of pile group adjacent of the slope is very important. The purpose of this study is to investigate and compare the bearing capacity and efficiency coefficient of vertical pile group under axial loading in the near sandy slopes in two modes of free horizontal movement and no free horizontal pile movement by testing the physical model of pile group. Also in the this study, horizontal force applied to the pile group with free lateral movement is investigated with the FLAC3D software. For this purpose, a series of experiments were performed on the physical model of 2 × 2, 2 × 1, 3 × 1 and 3×3 pile groups adjacent to the dry sandy slope without horizontal displacement and the results were obtained with previous research of other researchers in which the lateral displacement of the pile group has been free, compared. The results of the physical model tests show that the bearing capacity and efficiency coefficient of the pile group is dependent on the pile distance, the pile group configuration, and the liner pile-group direction relative to the slope direction. Also, the results of the physical model tests show that the bearing capacity and efficiency coefficient of the pile group with free lateral movement have higher values than the pile group without lateral movement. Numerical analysis results show that the lateral force applied to the pile group decreases by increasing the spacing of the piles, and the ratio of horizontal force to axial force in the linear pile group decreases with increasing number of piles.

کلیدواژه‌ها [English]

  • Pile group
  • Slope
  • Efficiency coefficient
  • Sand
  • Bearing capacity
[1] Viladkar, M., Bhargava, P. Godbole, P. (2006). Static soil–structure interaction response of hyperbolic cooling towers to symmetrical wind loads. Engineering structures. 28(9): p. 1236-1251.
[2] Vu, A.T. Matsumoto, T. Kobayashi, S. (2018). Model load tests on battered pile foundations and finite-element analysis. International Journal of Physical Modelling in Geotechnics. [online] 8(1): p. 33-54. Available at:https://www.icevirtuallibrary.com/doi/full/10.1680/jphmg.16.00010
[3] Xiang, B., Zhang,M.L Zhou, L. (2015). Field lateral load tests on slope-stabilization grouted pipe pile groups. Journal of Geotechnical and Geo environmental Engineering. [online] 141(4). Available at: https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GT.1943-5606.0001220
[4] Zhang, L., MacVay,M.C, Han, S.J. (2002). Effects of dead loads on the lateral response of battered pile groups. Canadian Geotechnical Journal. 39(3): p. 561-575.
[5] Zhang, S., Wei, Y.Chen, T. Zhang X. (2020). Centrifuge modeling of batter pile foundations in laterally spreading soil. Soil Dynamics and Earthquake Engineering. [online] 135. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0267726119309935
[6] Zhou, Y. and Tokimatsu, K. (2018). Numerical evaluation of pile group effect of a composite group. Soils and foundations. [online] 58(4). P. 1059-1067. Available at: https://www.sciencedirect.com/science/article/pii/S0038080618300799?via%3Dihub
[7] Rollins, K.M. Sparks, A.E. and K.T. Peterson. (2000). Lateral load capacity and passive resistance of full-scale pile group and cap. Transportation research record. 1736(1). p. 24-32.
[8] Sales, M.M., Salgado, R. Choi, Y. (2017). Load-settlement behaviour of model pile groups in sand under vertical load. Journal of Civil Engineering and Management. 23(8): p. 1148-1163.
[9] Shafaghat, A. Khabbaz, H, and Fatahi, B. (2022). Axial and Lateral Efficiency of Tapered Pile Groups in Sand Using Mathematical and Three-Dimensional Numerical Analyses. Journal of Performance of Constructed Facilities, [online] 36(1). Available at: https://ascelibrary.org/doi/10.1061/%28ASCE%29CF.1943-5509.0001680
[10] Rollins, K.M. and Sparks, A.E. (2002). Lateral resistance of full-scale pile cap with gravel backfill. Journal of Geotechnical and Geoenvironmental Engineering. 128(9): p. 711-723.
[11] Peng, W., Zhao M. ZHAO, H. (2020). A two-pile foundation model in sloping ground by finite beam element method. Computers and Geotechnics. [online] 122.
[12] Reul, O, Randolph, M. (2003). Piled rafts in over consolidated clay: comparison of in situ measurements and numerical analyses. Geotechnique. 53(3): p. 301-315.
[13] Rollins, K.M., Lane, D. Gerber, T.M. (2005). Lateral resistance of a full-scale pile group in liquefied sand. Journal of Geotechnical and Geoenvironmental Engineering. 131(1): p. 115-125.
[14] Ong, D. Ong, D.E.L. Cho, Y.K. (2015). Severe damage of a pile group due to slope failure. Journal of Geotechnical and Geoenvironmental Engineering. [online] 141(5). Available at: https://ascelibrary.org/doi/10.1061/%28ASCE%29GT.1943-5606.0001294
[15] Noonan, D. and Nixon, J. (1972). The determination of Young's modulus from the direct shear test. Canadian Geotechnical Journal. 9(4): p. 504-507.
[16] Han, F. Prezzi, M, Salgado, R. (2021). Group Efficiencies for Design of Non-Displacement Pile Groups in Sand, in IFCEE 20. p. 303-313.
[17] Al-Omari, R.R., Fattah, M.Y. and Kallawi, A.M. (2019). Laboratory study on load carrying capacity of pile group in unsaturated clay. Arabian Journal for Science and Engineering. [online] 44(5). Available at: https://link.springer.com/article/10.1007%2Fs13369-018-3483-9.
[18] Al-Khazaali, M. Vanapalli, S.K. (2019). Experimental investigation of single model pile and pile group behavior in saturated and unsaturated sand. Journal of Geotechnical and Geoenvironmental Engineering. [online] 145(12). Available at: https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GT.1943-5606.0002176.
[19] Padmavathi, M. Madhav, M. R. (2018) Response of Four Pile Group Subjected to Eccentric Loading. in International Congress and Exhibition" Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology". Springer.
[20] Koteswara, V.R. Padavala, H. Chennarapu, H. (2020). Experimental and numerical investigation of pile group with and without building frame subjected to axial load. Indian Geotechnical Journal. 50(3): p. 473-484.
[21] Cheng, Z. Sritharan, S. Ashlock, J.C. (2021). Behavior of a Pile Group Supporting a Precast Pile Cap under Combined Vertical and Lateral Loads. Journal of Geotechnical and Geo environmental Engineering. [online] 147(9). Available at: https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GT.1943-5606.0002592.
[22] Liu, S. Zhang, Q. q. and Feng, R. (2021). Model Test Study on Bearing Capacity of Nonuniformly Arranged Pile Groups. International Journal of Geomechanics. [online] 21(10). Available at: https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GM.1943-5622.0002181.
[23] Jiang, C., Liu, L. and He, J. (2020), Effect of the proximity of slope and pile shape on lateral capacity of piles in clay slopes. European Journal of Environmental and Civil Engineering, [online] p. 1-15. Available at: https://www.tandfonline.com/doi/abs/10.1080/19648189.2020.1858452?journalCode=tece20
[24] Liu, P., et al. (2021). A method for predicting lateral deflection of large-diameter monopile near clay slope based on soil-pile interaction. Computers and Geotechnics, [online] 135. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0266352X21001841
[25] Kranthikumar, A. Jakka, R.S. (2021). Effect of Edge Distance on Lateral Capacity of Piles in Cohesionless Soil Slopes. Indian Geotechnical Journal, [online] 50(6): p. 925-934. Available at: https://www.tandfonline.com/doi/abs/10.1080/19648189.2020.1858452?journalCode=tece20
[26] Khati, B.S. Sawant, V. (2021). Experimental study of laterally loaded pile group in square arrangement near sloping ground. International Journal of Geomechanics. [online] 21(2). Available at: https://ascelibrary.org/doi/10.1061/%28ASCE%29GM.1943-5622.0001911
[27] Liu, P. Ahmari, S. (2020). Nonlinear analysis of laterally loaded rigid piles at the crest of clay slopes. Computers and Geotechnics. [online] 126. Available at: https://onlinelibrary.wiley.com/doi/10.1002/nag.1094
[28] Nimityongskul, N. Ashford, S.A. Ramayajhi, D. (2018). Full-scale tests on effects of slope on lateral capacity of piles installed in cohesive soils. Journal of Geotechnical and Geoenvironmental Engineering. [online] 144(1): p. 04017103. https://ascelibrary.org/doi/10.1061/%28ASCE%29GT.1943-5606.0001805
[29] Hazari, S. Roy, S. and Ghosh, S. (2021). Stability Analysis of Layered Soil Slope Using Truncated Pile with Numerical Solution. Transportation Infrastructure Geotechnology. [online]. Available at:
https://link.springer.com/article/10.1007/s40515-021-00174-7.
[30] Lei, H. Liu, Xu. (2021). Stability analysis of slope reinforced by double-row stabilizing piles with different locations. Natural Hazards. [online] 106(1). Available at: https://link.springer.com/article/10.1007/s11069-020-04446-2.
[31] Sojoudi, Y. Sharafim, H. (2021). Study of soil deformation pattern in earth slope stabilised with pile. European journal of environmental and civil engineering. [online] 25(2) p 205-225. Available at: https://www.tandfonline.com/doi/abs/10.1080/19648189.2018.1521751?journalCode=tece20
[32] Xu, X., et al. (2021). Stability analysis of rainfall-triggered toe-cut slopes and effectiveness evaluation of pile-anchor structures. Journal of Earth Science. 32(5): p. 1104-1112.
[33] Mazaheri, A.R. Guo, Z. and Huang, Yu. (2021). Limit Analysis, Numerical, and Physical Modeling of Pile Stabilized Slopes using Image Processing Analyses. Iranian Journal of Science and Technology, Transactions of Civil Engineering. [online] 45(2): p. 891-900. Available at: https://link.springer.com/article/10.1007/s12583-021-1474-3
[34] Ilyas, T. Budi S.S, Chow L,Y. (2004). Centrifuge model study of laterally loaded pile groups in clay. Journal of Geotechnical and Geoenvironmental Engineering. 130(3): p. 274-283.
[35] Kavitha, P. Beena, K. Narayanan, K. (2016) A review on soil–structure interaction analysis of laterally loaded piles. Innovative Infrastructure Solutions. 1(1): p. 1-15.
[36] McCabe, B. and Lehane, B. (2016). Behavior of axially loaded pile groups driven in clayey silt. Journal of Geotechnical and Geoenvironmental Engineering. 132(3): p. 401-410.
[37] Mezazigh, S. and Levacher, D. (1998). Laterally loaded piles in sand: slope effect on py reaction curves. Canadian Geotechnical Journal. 35(3): p. 433-441.
[38] Motallebiyan, A., Bayat, M, and Nadi, B. (2020). Analyzing the Effects of Soil-Structure Interactions on the Static Response of Onshore Wind Turbine Foundations Using Finite Element Method. Civil Engineering Infrastructures Journal. 53(1): p. 189-205.
[39] Shakeel M, NG, C.W (2021), Performance of existing piled raft and pile group due to adjacent multipropped excavation: 3D centrifuge and numerical modeling. Journal of Geotechnical and Geo Environmental Engineering. [online] 147(4.) Available at: https://repository.ust.hk/ir/Record/1783.1-107799
[40] Shakeel M, Ng CWW (2018) Settlement and load transfer mechanism of a pile group adjacent to a deep excavation in soft clay. Comput Geotech 96:55–72. https:// doi. org/ 10. 1016/j. compg eo. 2017. 10.
010
[41] Mohammad Ali nejad, R. Bayat mesam, Nadi Bahram, Pakbaz mohammad siroos. (2021). Response of pile group adjacent to a slope crest under static axial loading. Arabian Journal of Geosciences. [online] 14(23). Available at: https://link.springer.com/article/10.1007/s12517-021-09123-7
[42] Jesmani, M.; Kasrania, A.; Kamalzare, M. (2018). Finite Element Modelling of Undrained Vertical Bearing Capacity of Piles Adjacent to Different Types of Clayey Slopes. Int. J. Geotech. Eng., , [online] 12 (2). p146–154. Available at: https://doi.org/10.1080/19386362.2016.1254398.
[43] Noonan, D. K. J.; Nixon, J. F. (1972). The Determination of Young’s Modulus from the Direct Shear Test. Can. Geotech. J. 9 (4), 504–507.
[44] Clement, L.H.; Polo, Jesus. (1988). Pile Group Settlement Using Independent Shaft and Point Load., Can. Geotech. j. 114 (4)