رویکردهای بهینه سازی برای کنترل سازه ها

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی عمران، دانشکده فنی مهندسی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 - دانشیار، گروه مهندسی عمران، دانشکده فنی مهندسی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

کنترل ارتعاش سازه های مهندسی ، تحت برخی از بار ها همانند زلزله و باد و ... در دهه های ا‌خیر به طور گسترده مورد بررسی قرار گرفته است. موضوع کنترل ارتعاش ، در بسیاری از سازه‌ ها مانند ساختمان های بلند ، پل‌ ها ، توربین های بادی ، فنداسیون های دارای ارتعاش اضافی در صنعت و حتی سازه های معمولی به منظور حفظ نمودن رفتار یک سازه در محدوده مجاز استفاده می شود. در این مقاله ، برخی از مطالعات اخیر در زمینه کنترل بهینه سازه ها بررسی شده است سعی گردیده تا مروری جامع بر مقالات مطرح شده در زمینه طراحی بهینه سیستم های کنترل شناخته شده از جمله میراگر جرمی تنظیم شونده (فعال ، غیر فعال و نیمه فعال) ، میراگر ویسکو الاستیک و جدا سازی پایه (غیرفعال و نیمه فعال) ، میراگر ویسکوز مایع (غیر فعال و نیمه فعال) و تاندون فعال با توجه ویژه به مطالعات انجام شده در دهه های گذشته، انجام پذیرد. همچنین با توجه به قابلیت میراگر های اصطکاکی به دلیل سادگی، قابلیت اطمینان و حداکثر اتلاف انرژی، به‌ عنوان یک دستگاه اتلاف انرژی، به‌ویژه برای تقویت لرزه ای سازه‌های مهندسی، مروری مختصر بر بهینه سازی میراگر های اصطکاکی انجام پذیرفته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization approaches for structural control

نویسندگان [English]

  • Saeedeh Ghaemifard 1
  • Amin Ghannadiasl 2
1 Ph.D. Student, Department of Civil Engineering, Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
2 Associate Professor, Department of Civil Engineering, Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

In recent decades , the vibration control of the structures subject to some loads , such as winds and earthquakes , etc . , has been widely expressed. Vibration control, which intends to keep the behavior of a structure within a permissible limit , is utilized in several structures , like bridges , tall buildings , wind turbines , foundations with additional vibrations in industry , and even ordinary structures. In this paper , some of the recent studies on optimal control of the structures are reviewed. In other words , a comprehensive review of articles on the optimal design of different known control systems of each category i.e. , Tuned Mass Dampers (Active , Passive , and Semi - active) , Viscoelastic Dampers and Base Isolation (Passive and Semi - active) , Fluid Viscous Dampers (Passive and Semi - active) and the active Tendons , with special attention to studies performed in the past decades, are presented. Also , due to simplicity , reliability , and maximum energy dissipation of the friction dampers as an energy dissipation device , especially for seismic amplification of the engineering structures , a brief overview of the optimization of the friction dampers is discussed.

کلیدواژه‌ها [English]

  • Structural control
  • Optimization
  • Meta-heuristic algorithms
  • Friction damper
  • Seismic hazard
[1]Mottershead, J.E., M. Link, and M.I. Friswell, (2011). The sensitivity method in finite element model updating: A tutorial. Mechanical systems and signal processing, 25(7): p. 2275-2296.
[2]Yan, W.J. and W.X. Ren, (2011). A direct algebraic method to calculate the sensitivity of element modal strain energy. International Journal for Numerical Methods in Biomedical Engineering, 27(5): p. 694-710.
[3]Elias, S. and V. Matsagar, (2017). Research developments in vibration control of structures using passive tuned mass dampers. Annual Reviews in Control, 44: p. 129-156.
[4]De Domenico, D., G. Ricciardi, and I. Takewaki, (2019). Design strategies of viscous dampers for seismic protection of building structures: a review. Soil dynamics and earthquake engineering, 118: p. 144-165.
[5]Singh, M.P., S. Singh, and L.M. Moreschi, (2002). Tuned mass dampers for response control of torsional buildings. Earthquake engineering & structural dynamics, 31(4): p. 749-769.
[6]Den Hartog, J.P., (1985), Mechanical vibrations. Courier Corporation.
[7]IOI, T. and K. IKEDA, (1978). On the dynamic vibration damped absorber of the vibration system. Bulletin of JSME, 21(151): p. 64-71.
[8]Villaverde, R., (1985). Reduction seismic response with heavily‐damped vibration absorbers. Earthquake Engineering & Structural Dynamics, 13(1): p. 33-42.
[9]Sadek, F., et al., (1997). A method of estimating the parameters of tuned mass dampers for seismic applications. Earthquake Engineering & Structural Dynamics, 26(6): p. 617-635.
[10]Warburton, G. and E. Ayorinde, (1980). Optimum absorber parameters for simple systems. Earthquake Engineering & Structural Dynamics, 8(3): p. 197-217.
[11]Randall, S., D. Halsted III, and D. Taylor, (1981). Optimum vibration absorbers for linear damped systems.
[12]Kaveh, A. and M.I. Ghazaan, (2018), Meta-heuristic algorithms for optimal design of real-size structures. Springer.
[13]Kaveh, A., (2017), Applications of metaheuristic optimization algorithms in civil engineering. Springer.
[14]Hadi, M.N. and Y. Arfiadi, (1998). Optimum design of absorber for MDOF structures. Journal of Structural Engineering, 124(11): p. 1272-1280.
[15]Leung, A.Y., et al., (2008). Particle swarm optimization of TMD by non‐stationary base excitation during earthquake. Earthquake Engineering & Structural Dynamics, 37(9): p. 1223-1246.
[16]Bekdaş, G. and S.M. Nigdeli, (2011). Estimating optimum parameters of tuned mass dampers using harmony search. Engineering Structures, 33(9): p. 2716-2723.
[17]Farshidianfar, A. and S. Soheili, (2013). Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil–structure interaction. Soil Dynamics and Earthquake Engineering, 51: p. 14-22.
[18]Farshidianfar, A. and S. Soheili, (2013). ABC optimization of TMD parameters for tall buildings with soil structure interaction. Interaction and multiscale mechanics, 6(4): p. 339-356.
[19]Nigdeli, S.M., G. Bekdas, and X. Yang, (2016). Optimum tuning of mass dampers for seismic structures using flower pollination algorithm. Int. J. Theor. Appl. Mech, 1: p. 264-268.
[20]Fahimi Farzam, M. and A. Kaveh, (2020). Optimum design of tuned mass dampers using colliding bodies optimization in frequency domain. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 44(3): p. 787-802.
[21]Bekdaş, G., et al., (2019). Tranfer function amplitude minimization for structures with tuned mass dampers considering soil-structure interaction. Soil Dynamics and Earthquake Engineering, 116: p. 552-562.
[22]Kamgar, R. and M. Khatibinia, (2019). Optimization criteria for design of tuned mass dampers including soil–structure interaction effect. Iran University of Science & Technology, 9(2): p. 213-232.
[23]Li, H.-N. and X.-L. Ni, (2007). Optimization of non-uniformly distributed multiple tuned mass damper. Journal of Sound and Vibration, 308(1): p. 80-97.
[24]Yucel, M., et al., (2019). Estimation of optimum tuned mass damper parameters via machine learning. Journal of Building Engineering, 26: p. 100847.
[25]Nigdeli, S.M. and G. Bekdaş, (2017). Optimum tuned mass damper design in frequency domain for structures. KSCE Journal of Civil Engineering, 21(3): p. 912-922.
[26]Zuo, L. and S.A. Nayfeh, (2004). Minimax optimization of multi-degree-of-freedom tuned-mass dampers. Journal of Sound and Vibration, 272(3): p. 893-908.
[27]Soheili, S., H. Zoka, and M. Abachizadeh, (2021). Tuned mass dampers for the drift reduction of structures with soil effects using ant colony optimization. Advances in Structural Engineering, 24(4): p. 771-783.
[28]Parulekar, Y. and G. Reddy, (2009). Passive response control systems for seismic response reduction: A state-of-the-art review. International Journal of Structural Stability and Dynamics, 9(01): p. 151-177.
[29]Saaed, T.E., et al., (2015). A state-of-the-art review of structural control systems. Journal of Vibration and Control, 21(5): p. 919-937.
[30]Kiani, M. and J. Vaseghi Amiri, (2019). Evaluation of effects of hysteretic damping of shape memory alloys on seismic performance of tuned mass damper. Journal of Structural and Construction Engineering, 6(Special Issue 2): p. 5-24.
[31]De Silva, C., (1981). An algorithm for the optimal design of passive vibration controllers for flexible systems. Journal of sound and Vibration, 75(4): p. 495-502.
[32]Gürgöze, M. and P. Müller, (1992). Optimal positioning of dampers in multi-body systems. Journal of sound and vibration, 158(3): p. 517-530.
[33]Tsuji, M. and T. Nakamura, (1996). Optimum viscous dampers for stiffness design of shear buildings. The structural design of tall buildings, 5(3): p. 217-234.
[34]Takewaki, I., (2000). Soil–structure random response reduction via TMD-VD simultaneous use. Computer methods in applied mechanics and engineering, 190(5-7): p. 677-690.
[35]Garcia, D.L., (2001). A simple method for the design of optimal damper configurations in MDOF structures. Earthquake spectra, 17(3): p. 387-398.
[36]Singh, M.P. and L.M. Moreschi, (2002). Optimal placement of dampers for passive response control. Earthquake engineering & structural dynamics, 31(4): p. 955-976.
[37]Martinez-Rodrigo, M. and M. Romero, (2003). An optimum retrofit strategy for moment resisting frames with nonlinear viscous dampers for seismic applications. Engineering structures, 25(7): p. 913-925.
[38]Christopoulos, C., A. Filiatrault, and V.V. Bertero, (2006), Principles of passive supplemental damping and seismic isolation. Iuss press Pavia, Italy.
[39]Takewaki, I., (2011), Building control with passive dampers: optimal performance-based design for earthquakes. John Wiley & Sons.
[40]Aydin, E., M. Boduroglu, and D. Guney, (2007). Optimal damper distribution for seismic rehabilitation of planar building structures. Engineering Structures, 29(2): p. 176-185.
[41]Estekanchi, H.E. and M.C. Basim, (2011). Optimal damper placement in steel frames by the Endurance Time method. The structural design of tall and special buildings, 20(5): p. 612-630.
[42]Parcianello, E., C. Chisari, and C. Amadio, (2017). Optimal design of nonlinear viscous dampers for frame structures. Soil Dynamics and Earthquake Engineering, 100: p. 257-260.
[43]Altieri, D., et al., (2018). Reliability-based optimal design of nonlinear viscous dampers for the seismic protection of structural systems. Bulletin of Earthquake Engineering, 16(2): p. 963-982.
[44]Akehashi, H. and I. Takewaki, (2020). Comparative investigation on optimal viscous damper placement for elastic-plastic MDOF structures: transfer function amplitude or double impulse. Soil Dynamics and Earthquake Engineering, 130: p. 105987.
[45]Xu, Y.L., Q. He, and J. Ko, (1999). Dynamic response of damper-connected adjacent buildings under earthquake excitation. Engineering Structures, 21(2): p. 135-148.
[46]Kandemir-Mazanoglu, E.C. and K. Mazanoglu, (2017). An optimization study for viscous dampers between adjacent buildings. Mechanical Systems and Signal Processing, 89: p. 88-96.
[47]Liu, Y., J. Wu, and M. Donà, (2018). Effectiveness of fluid-viscous dampers for improved seismic performance of inter-storey isolated buildings. Engineering structures, 169: p. 276-292.
[48]Lagaros, N.D., (2012), Design optimization of active and passive structural control systems. IGI global.
[49]Housner, G., et al., (1997). Structural control: past, present, and future. Journal of engineering mechanics, 123(9): p. 897-971.
[50]Nielsen, E.J., et al. (1996). Viscoelastic damper overview for seismic and wind applications, Location: International Society for Optics and Photonics. pages.
[51]Zhang, R.-H. and T. Soong, (1992). Seismic design of viscoelastic dampers for structural applications. Journal of Structural Engineering, 118(5): p. 1375-1392.
[52]Hahn, G. and K. Sathiavageeswaran, (1992). Effects of added-damper distribution on the seismic response of buildings. Computers & structures, 43(5): p. 941-950.
[53]Wu, B., J.-P. Ou, and T. Soong, (1997). Optimal placement of energy dissipation devices for three-dimensional structures. Engineering Structures, 19(2): p. 113-125.
[54]Shukla, A. and T. Datta, (1999). Optimal use of viscoelastic dampers in building frames for seismic force. Journal of Structural Engineering, 125(4): p. 401-409.
[55]Kim, J. and S. Bang, (2002). Optimum distribution of added viscoelastic dampers for mitigation of torsional responses of plan-wise asymmetric structures. Engineering structures, 24(10): p. 1257-1269.
[56]Xu, Z.-D., Y.-P. Shen, and H.-T. Zhao, (2003). A synthetic optimization analysis method on structures with viscoelastic dampers. Soil Dynamics and Earthquake Engineering, 23(8): p. 683-689.
[57]Park, J.H., J. Kim, and K.W. Min, (2004). Optimal design of added viscoelastic dampers and supporting braces. Earthquake engineering & structural dynamics, 33(4): p. 465-484.
[58]Fujita, K., A. Moustafa, and I. Takewaki, (2010). Optimal placement of viscoelastic dampers and supporting members under variable critical excitations. Earthq. Struct, 1(1): p. 43-67.
[59]Pawlak, Z. and R. Lewandowski. (2010). Optimization of viscoelastic dampers as described by the fractional rheological model, Location., pages.
[60]Zhu, H., D. Ge, and X. Huang, (2011). Optimum connecting dampers to reduce the seismic responses of parallel structures. Journal of Sound and Vibration, 330(9): p. 1931-1949.
[61]Heydarinouri, H. and S.M. Zahrai, (2017). Iterative step‐by‐step procedure for optimal placement and design of viscoelastic dampers to improve damping ratio. The Structural Design of Tall and Special Buildings, 26(9): p. e1361.
[62]Morgan, T.A., (2007), The use of innovative base isolation systems to achieve complex seismic performance objectives. University of California, Berkeley.
[63]Carrera, E., (2002). Theories and finite elements for multilayered, anisotropic, composite plates and shells. Archives of Computational Methods in Engineering, 9(2): p. 87-140.
[64]Khatir, A., Tehami, M., Khatir, S., & Abdel Wahab, M. (2016). Multiple damage detection and localization in beam-like and complex structures using co-ordinate modal assurance criterion combined with firefly and genetic algorithms. JOURNAL OF VIBROENGINEERING, 18(8), 5063–5073. .
[65]Zou, X.-K., et al., (2010). Integrated reliability-based seismic drift design optimization of base-isolated concrete buildings. Journal of Structural Engineering, 136(10): p. 1282-1295.
[66]Mishra, S.K., B.K. Roy, and S. Chakraborty, (2013). Reliability-based-design-optimization of base isolated buildings considering stochastic system parameters subjected to random earthquakes. International Journal of Mechanical Sciences, 75: p. 123-133.
[67]Zhang, J. and Z. Shu, (2018). Optimal design of isolation devices for mid-rise steel moment frames using performance based methodology. Bulletin of Earthquake Engineering, 16(9): p. 4315-4338.
[68]Mousazadeh, M., et al., (2020). An efficient approach for LCC-based optimum design of lead-rubber base isolation system via FFD and analysis of variance (ANOVA). Bulletin of Earthquake Engineering, 18(4): p. 1805-1827.
[69]Roy, B.K. and S. Chakraborty, (2015). Robust optimum design of base isolation system in seismic vibration control of structures under random system parameters. Structural Safety, 55: p. 49-59.
[70]Hu, J. and J. Xu, (2020). Parameter Optimization and Control Characteristics Analysis of TLMD System Based on Phase Deviation. Journal of Shanghai Jiaotong University (Science), 25(3): p. 372-383.
[71]Park, S., M. Glade, and M.A. Lackner, (2020). Multi-objective optimization of orthogonal TLCDs for reducing fatigue and extreme loads of a floating offshore wind turbine. Engineering Structures, 209: p. 110260.
[72]Manchalwar, A. and S. Bakre, (2019). Optimization of metallic damper location for seismic response control. Journal of Vibration Engineering & Technologies, 7(3): p. 261-275.
[73]Javanmardi, A., et al., (2020). State-of-the-art review of metallic dampers: testing, development and implementation. Archives of Computational Methods in Engineering, 27(2): p. 455-478.
[74]Jarrahi, H., et al., (2020). Optimal design of rotational friction dampers for improving seismic performance of inelastic structures. Journal of Building Engineering, 27: p. 100960.
[75]Zou, S., W. Heisha, and P. Tan, (2020). Performance-based dynamic optimal design for isolated structures with multiple-coupling friction dampers. Advances in Structural Engineering, 23(10): p. 2149-2162.
[76]Deng, K., et al., (2015). Shape optimization of U-shaped damper for improving its bi-directional performance under cyclic loading. Engineering Structures, 93: p. 27-35.
[77]Khatibinia, M., M. Jalaipour, and S. Gharehbaghi, (2019). Shape optimization of U-shaped steel dampers subjected to cyclic loading using an efficient hybrid approach. Engineering Structures, 197: p. 108874.
[78]Morales-Beltran, M. and P. Teuffel, (2013). Towards smart building structures: adaptive structures in earthquake and wind loading control response–a review. Intelligent Buildings International, 5(2): p. 83-100.
[79]Casciati, F., J. Rodellar, and U. Yildirim, (2012). Active and semi-active control of structures–theory and applications: A review of recent advances. Journal of Intelligent Material Systems and Structures, 23(11): p. 1181-1195.
[80]Lund, R., (1980 published), Active Damping of Large Structures in Winds, Structural Control, vol. 459. North-Holland Publishing Company.
[81]Chang, J.C. and T.T. Soong, (1980). Structural control using active tuned mass dampers. Journal of the Engineering Mechanics Division, 106(6): p. 1091-1098.
[82]Nishimura, I. (1992). Acceleration feedback method applied to active tuned mass damper, Location: International Society for Optics and Photonics. pages.
[83]Nishimura, I., et al., (1994). Acceleration feedback method applied to active‐passive composite tuned mass damper. Journal of Structural Control, 1(1‐2): p. 103-116.
[84]Xu, Y.L., (1996). Parametric study of active mass dampers for wind-excited tall buildings. Engineering structures, 18(1): p. 64-76.
[85]Wu, J. and J. Yang, (1998). Active control of transmission tower under stochastic wind. Journal of Structural engineering, 124(11): p. 1302-1312.
[86]Li, C., J. Li, and Y. Qu, (2010). An optimum design methodology of active tuned mass damper for asymmetric structures. Mechanical Systems and Signal Processing, 24(3): p. 746-765.
[87]Jiang, X. and H. Adeli, (2008). Neuro‐genetic algorithm for non‐linear active control of structures. International Journal for Numerical Methods in Engineering, 75(7): p. 770-786.
[88]Ahlawat, A. and A. Ramaswamy, (2004). Multiobjective optimal fuzzy logic control system for response control of wind-excited tall buildings. Journal of engineering mechanics, 130(4): p. 524-530.
[89]Soleymani, M. and M. Khodadadi, (2014). Adaptive fuzzy controller for active tuned mass damper of a benchmark tall building subjected to seismic and wind loads. The Structural Design of Tall and Special Buildings, 23(10): p. 781-800.
[90]Kayabekir, A.E., et al., (2020). Optimum design of PID controlled active tuned mass damper via modified harmony search. Applied Sciences, 10(8): p. 2976.
[91]Amini, F., N.K. Hazaveh, and A.A. Rad, (2013). Wavelet PSO‐based LQR algorithm for optimal structural control using active tuned mass dampers. Computer‐Aided Civil and Infrastructure Engineering, 28(7): p. 542-557.
[92]Shariatmadar, H. and H.M. Razavi, (2014). Seismic control response of structures using an ATMD with fuzzy logic controller and PSO method. Struct. Eng. Mech, 51(4): p. 547-564.
[93]Amini, F. and A. Bagheri, (2014). Optimal control of structures under earthquake excitation based on the colonial competitive algorithm. The Structural Design of Tall and Special Buildings, 23(7): p. 500-511.
[94]Pourzeynali, S., H. Lavasani, and A. Modarayi, (2007). Active control of high rise building structures using fuzzy logic and genetic algorithms. Engineering Structures, 29(3): p. 346-357.
[95]Ozer, H.O., et al. (2013). Sliding mode control optimized by genetic algorithm for building model, Location., pages.
[96]Li, Q., et al., (2000). Multi-level optimal design of buildings with active control under winds using genetic algorithms. Journal of Wind Engineering and Industrial Aerodynamics, 86(1): p. 65-86.
[97]Ankireddi, S. and H.T. Yang, (1997). Multiple objective LQG control of wind-excited buildings. Journal of Structural Engineering, 123(7): p. 943-951.
[98]Wong, K.K. and R. Yang, (2003). Predictive instantaneous optimal control of elastic structures during earthquakes. Earthquake engineering & structural dynamics, 32(14): p. 2161-2177.
[99]Khatibinia, M., M. Mahmoudi, and H. Eliasi, (2020). Optimal sliding mode control for seismic control of buildings equipped with ATMD. Iran University of Science & Technology, 10(1): p. 1-15.
[100]Chang, C.-C. and L.-O. Yu, (1998). A simple optimal pole location technique for structural control. Engineering structures, 20(9): p. 792-804.
[101]Palazzo, B. and L. Petti, (1999). Optimal structural control in the frequency domain: control in norm H2 and H∞. Journal of Structural Control, 6(2): p. 205-221.
[102]Huo, L., et al., (2007). Robust control design of active structural vibration suppression using an active mass damper. Smart materials and structures, 17(1): p. 015021.
[103]Ahlawat, A. and A. Ramaswamy, (2001). Multiobjective optimal structural vibration control using fuzzy logic control system. Journal of Structural Engineering, 127(11): p. 1330-1337.
[104]Othman, S.M., et al., (2015). PID parameters optimization using PSO technique for nonlinear electro hydraulic actuator. Jurnal Teknologi, 77(28).
[105]Arif Şen, M., M. Tinkir, and M. Kalyoncu, (2018). Optimisation of a PID controller for a two-floor structure under earthquake excitation based on the bees algorithm. Journal of Low Frequency Noise, Vibration and Active Control, 37(1): p. 107-127.
[106]Soong, T., (1988). State-of-the-art review: active structural control in civil engineering. Engineering Structures, 10(2): p. 74-84.
[107]Suhardjo, J., B. Spencer Jr, and A. Kareem, (1992). Frequency domain optimal control of wind-excited buildings. Journal of Engineering Mechanics, 118(12): p. 2463-2481.
[108]Chang, C.-C. and C.-C. Lin, (2009). H∞ drift control of time-delayed seismic structures. Earthquake Engineering and Engineering Vibration, 8(4): p. 617-626.
[109]Li, Q., D. Liu, and J. Fang, (1999). Optimum design of actively controlled structures using genetic algorithms. Advances in Structural Engineering, 2(2): p. 109-118.
[110]Issa, J., R. Mukherjee, and S.W. Shaw, (2010). Vibration suppression in structures using cable actuators. Journal of Vibration and Acoustics, 132(3).
[111]Rao, A.R.M. and K. Sivasubramanian, (2008). Optimal placement of actuators for active vibration control of seismic excited tall buildings using a multiple start guided neighbourhood search (MSGNS) algorithm. Journal of Sound and Vibration, 311(1-2): p. 133-159.
[112]Nigdeli, S.M., (2011). Active brace control of frame structures under earthquake excitation. Nat. Cataclysms Glob. Prob. Mod. Civilization, 102.
[113]Gluck, J. and Y. Ribakov, (2002). Active viscous damping system with amplifying braces for control of MDOF structures. Earthquake engineering & structural dynamics, 31(9): p. 1735-1751.
[114]Gupta, H., T. Soong, and G. Dargush, (2000). Active aerodynamic bi-directional control of structures II:: tall buildings. Engineering structures, 22(4): p. 389-399.
[115]Scruggs, J., A. Taflanidis, and J. Beck, (2006). Reliability‐based control optimization for active base isolation systems. Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 13(2‐3): p. 705-723.
[116]Balendra, T., C. Wang, and N. Yan, (2001). Control of wind-excited towers by active tuned liquid column damper. Engineering Structures, 23(9): p. 1054-1067.
[117]Xu, J., et al., (2020). Research on semi-active vibration isolation system based on electromagnetic spring. Mechanics & Industry, 21(1): p. 101.
[118]Dyke, S.J., et al., (1996). Modeling and control of magnetorheological dampers for seismic response reduction. Smart materials and structures, 5(5): p. 565.
[119]Dyke, S., et al., (1996). Seismic response reduction using magnetorheological dampers. IFAC Proceedings Volumes, 29(1): p. 5530-5535.
[120]Spencer, B., S. Dyke, and M.K. Sain. (1996). Magnetorheological dampers: a new approach to seismic protection of structures, Location: IEEE. pages.
[121]Jung, H.-J., I.W. Lee, and B.F. Spencer Jr. (2002). State-of-the-art of MR damper-based control systems in civil engineering applications, Location., pages.
[122]Xue, X., et al., (2010). Parameter identification of simplified Bouc-Wen model for a MR damper using efficient GA. International Journal of Applied Electromagnetics and Mechanics, 33(1-2): p. 175-181.
[123]Azar, B.F., et al., (2020). Optimal design of magnetorheological damper based on tuning Bouc-Wen model parameters using hybrid algorithms. KSCE Journal of Civil Engineering, 24(3): p. 867-878.
[124]Razman, M.A., G. Priyandoko, and A.R. Yusoff. (2014). Bouc-Wen model parameter identification for a MR fluid damper using particle swarm optimization, Location: Trans Tech Publ. pages.
[125]Yang, Y., Y. Ding, and S. Zhu. (2020). parameter identification of MR damper model based on particle swarm optimization, Location: Springer. pages.
[126]Xiao, Z., Z. Zhang, and A. Quansah, (2019). Combined Identification of Parameters in the Mechanical Model of Magnetorheological Damper. Journal of Civil Engineering Research, 9(1): p. 16-24.
[127]Zhu, H., et al., (2019). An efficient parameters identification method of normalized Bouc-Wen model for MR damper. Journal of Sound and Vibration, 448: p. 146-158.
[128]Talatahari, S., A. Kaveh, and N. Mohajer Rahbari, (2012). Parameter identification of Bouc-Wen model for MR fluid dampers using adaptive charged system search optimization. Journal of mechanical science and technology, 26(8): p. 2523-2534.
[129]Zaman, M.A. and U. Sikder, (2015). Bouc–Wen hysteresis model identification using modified firefly algorithm. Journal of Magnetism and Magnetic Materials, 395: p. 229-233.
[130]Giuclea, M., T. Sireteanu, and A. Mitu, (2009). Use of genetic algorithms for fitting the Bouc-Wen model to experimental hysteretic curves. Rev. Roum. Sci. Techn.–Mec. Appl, 54(1): p. 3-10.
[131]Bartkowski, P., R. Zalewski, and P. Chodkiewicz, (2019). Parameter identification of Bouc-Wen model for vacuum packed particles based on genetic algorithm. Archives of Civil and Mechanical Engineering, 19(2): p. 322-333.
[132]Ye, M. and X. Wang, (2007). Parameter estimation of the Bouc–Wen hysteresis model using particle swarm optimization. Smart Materials and Structures, 16(6): p. 2341.
[133]Charalampakis, A. and C. Dimou, (2010). Identification of Bouc–Wen hysteretic systems using particle swarm optimization. Computers & structures, 88(21-22): p. 1197-1205.
[134]Son, N.N., C. Van Kien, and H.P.H. Anh, (2020). Parameters identification of Bouc–Wen hysteresis model for piezoelectric actuators using hybrid adaptive differential evolution and Jaya algorithm. Engineering Applications of Artificial Intelligence, 87: p. 103317.
[135]Talatahari, S., et al., (2014). Solving parameter identification of nonlinear problems by artificial bee colony algorithm. Mathematical Problems in Engineering, 2014.
[136]Spencer Jr, B., et al., (1997). Phenomenological model for magnetorheological dampers. Journal of engineering mechanics, 123(3): p. 230-238.
[137]Yang, G., et al., (2002). Large-scale MR fluid dampers: modeling and dynamic performance considerations. Engineering structures, 24(3): p. 309-323.
[138]Giuclea, M., et al., (2004). Modeling of magneto rheological damper dynamic behavior by genetic algorithms based inverse method. The Romanian Academy, 5(1): p. 000-000.
[139]Giuclea, M., et al., (2004). Model parameter identification for vehicle vibration control with magnetorheological dampers using computational intelligence methods. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 218(7): p. 569-581.
[140]Shu, G. and Z. Li, (2017). Parametric identification of the Bouc-Wen model by a modified genetic algorithm: Application to evaluation of metallic dampers. Earthquakes and Structures, 13(4): p. 397-407.
[141]Kwok, N., et al., (2006). A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization. Sensors and Actuators A: Physical, 132(2): p. 441-451.
[142]Kwok, N., et al., (2007). Bouc–Wen model parameter identification for a MR fluid damper using computationally efficient GA. ISA transactions, 46(2): p. 167-179.
[143]Yan, G. and L.L. Zhou, (2006). Integrated fuzzy logic and genetic algorithms for multi-objective control of structures using MR dampers. Journal of sound and vibration, 296(1-2): p. 368-382.
[144]Askari, M. and A.H. Davaie-Markazi. (2008). Multi-objective optimal fuzzy logic controller for nonlinear building-MR damper system, Location: IEEE. pages.
[145]Shook, D.A., et al., (2008). GA-optimized fuzzy logic control of a large-scale building for seismic loads. Engineering structures, 30(2): p. 436-449.
[146]Shook, D.A., et al., (2009). Semi-active control of a torsionally-responsive structure. Engineering Structures, 31(1): p. 57-68.
[147]Ali, S.F. and A. Ramaswamy, (2009). Optimal fuzzy logic control for MDOF structural systems using evolutionary algorithms. Engineering Applications of Artificial Intelligence, 22(3): p. 407-419.
[148]Huang, Z.-S., C. Wu, and D.-S. Hsu, (2009). Semi-active fuzzy control of mr damper on structures by genetic algorithm. Journal of Mechanics, 25(1): p. N1-N6.
[149]Bitaraf, M., et al., (2010). Application of semi-active control strategies for seismic protection of buildings with MR dampers. Engineering Structures, 32(10): p. 3040-3047.
[150]Bozorgvar, M. and S.M. Zahrai, (2019). Semi-active seismic control of buildings using MR damper and adaptive neural-fuzzy intelligent controller optimized with genetic algorithm. Journal of Vibration and Control, 25(2): p. 273-285.
[151]Uz, M.E. and M.N. Hadi, (2014). Optimal design of semi active control for adjacent buildings connected by MR damper based on integrated fuzzy logic and multi-objective genetic algorithm. Engineering structures, 69: p. 135-148.
[152]Raeesi, F., et al. (2020). An inverse TSK model of MR damper for vibration control of nonlinear structures using an improved grasshopper optimization algorithm, Location: Elsevier. pages.
[153]Schurter, K.C. and P.N. Roschke, (2001). Neuro-fuzzy control of structures using acceleration feedback. Smart Materials and Structures, 10(4): p. 770.
[154]Hiramoto, K., T. Matsuoka, and K. Sunakoda, (2011). Inverse Lyapunov approach for semi‐active control of civil structures. Structural Control and Health Monitoring, 18(4): p. 382-403.
[155]Hashemi, S.M.A., H. Haji Kazemi, and A. Karamodin, (2016). Localized genetically optimized wavelet neural network for semi‐active control of buildings subjected to earthquake. Structural Control and Health Monitoring, 23(8): p. 1074-1087.
[156]Shi, Y., N. Xin, and W. Ningwei, (2004). Optimal placement of MR damper set in structures. Earthquake Engineering and Engineering Vibration, 24(3): p. 175-178.
[157]Ok, S.-Y., J. Song, and K.-S. Park, (2008). Optimal design of hysteretic dampers connecting adjacent structures using multi-objective genetic algorithm and stochastic linearization method. Engineering structures, 30(5): p. 1240-1249.
[158]Bao, Y., et al., (2009). Semi-active direct velocity control method of dynamic response of spatial reticulated structures based on MR dampers. Advances in Structural Engineering, 12(4): p. 547-558.
[159]Li, L., G. Song, and J. Ou, (2010). A genetic algorithm-based two-phase design for optimal placement of semi-active dampers for nonlinear benchmark structure. Journal of Vibration and Control, 16(9): p. 1379-1392.
[160]Amini, F. and K. Karami, (2011). Capacity design by developed pole placement structural control. Structural engineering and mechanics: An international journal, 39(1): p. 147-168.
[161]Elmeligy, O.M. and M. Hassan, (2016). Optimum allocation of MR dampers within semi-active control strategies of three-degree-of-freedom systems. International Journal of Recent Contributions from Engineering, Science & IT (iJES), 4(4): p. 45-49.
[162]Bhaiya, V., et al., (2018). Genetic algorithm based optimum semi-active control of building frames using limited number of magneto-rheological dampers and sensors. Journal of Dynamic Systems, Measurement, and Control, 140(10): p. 101013.
[163]Zabihi-Samani, M. and M. Ghanooni-Bagha, (2019). Optimal semi-active structural control with a wavelet-based cuckoo-search fuzzy logic controller. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 43(4): p. 619-634.
[164]Fazaeli Hosseini Nejad, H. and A. Karamodin, (2021). Semi-active control of three-story benchmark structure using LQG algorithm with a fuzzy-genetic system. Journal of Structural and Construction Engineering.
[165]Hrovat, D., P. Barak, and M. Rabins, (1983). Semi-active versus passive or active tuned mass dampers for structural control. Journal of Engineering Mechanics, 109(3): p. 691-705.
[166]Setareh, M., et al., (2007). Semiactive tuned mass damper for floor vibration control. Journal of Structural Engineering, 133(2): p. 242-250.
[167]Kaveh, A., S. Pirgholizadeh, and H.O. Khadem, (2015). Semi-active tuned mass damper performance with optimized fuzzy controller using CSS algorithm.
[168]Madden, G.J., M.D. Symans, and N. Wongprasert, (2002). Experimental verification of seismic response of building frame with adaptive sliding base-isolation system. Journal of Structural Engineering, 128(8): p. 1037-1045.
[169]Wongprasert, N. and M. Symans, (2005). Experimental evaluation of adaptive elastomeric base-isolated structures using variable-orifice fluid dampers. Journal of Structural Engineering, 131(6): p. 867-877.
[170]Narasimhan, S. and S. Nagarajaiah, (2006). Smart base isolated buildings with variable friction systems: H∞ controller and SAIVF device. Earthquake engineering & structural dynamics, 35(8): p. 921-942.
[171]Choi, K.M., et al., (2007). Modified energy dissipation algorithm for seismic structures using magnetorheological damper. KSCE Journal of Civil Engineering, 11(2): p. 121-126.
[172]Moon, S.-J., et al., (2011). Sub-optimal design procedure of valve-mode magnetorheological fluid dampers for structural control. KSCE Journal of Civil Engineering, 15(5): p. 867-873.
[173]Bharti, S., S. Dumne, and M. Shrimali, (2014). Earthquake response of asymmetric building with MR damper. Earthquake engineering and Engineering vibration, 13(2): p. 305-316.
[174]Ramallo, J., E. Johnson, and B. Spencer Jr, (2000). “Smart” Isolation for Seismic Control. USA Today.
[175]Lee, H.J., et al., (2006). Semi‐active neurocontrol of a base‐isolated benchmark structure. Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 13(2‐3): p. 682-692.
[176]Ali, S.F. and A. Ramaswamy, (2009). Hybrid structural control using magnetorheological dampers for base isolated structures. Smart Materials and Structures, 18(5): p. 055011.
[177]Kim, H.-S. and P.N. Roschke, (2006). Design of fuzzy logic controller for smart base isolation system using genetic algorithm. Engineering Structures, 28(1): p. 84-96.
[178]Kim, H.S. and P.N. Roschke, (2006). Fuzzy control of base‐isolation system using multi‐objective genetic algorithm. Computer‐Aided Civil and Infrastructure Engineering, 21(6): p. 436-449.
[179]Ozbulut, O.E., M. Bitaraf, and S. Hurlebaus, (2011). Adaptive control of base-isolated structures against near-field earthquakes using variable friction dampers. Engineering Structures, 33(12): p. 3143-3154.
[180]Mohebbi, M. and H. Dadkhah, (2017). Multi-objective semi-active base isolation system. Iran University of Science & Technology, 7(3): p. 319-338.
[181]Symans, M.D., (1996). Development and experimental study of semi-active fluid damping devices for seismic protection of structures.
[182]Bakhshinezhad, S. and M. Mohebbi. (2020). Multi-objective optimal design of semi-active fluid viscous dampers for nonlinear structures using NSGA-II, Location: Elsevier. pages.
[183]Kazemi Bidokhti, K., H. Moharrami, and A. Fayezi, (2012). Semi‐active fuzzy control for seismic response reduction of building frames using SHD dampers. Structural Control and Health Monitoring, 19(3): p. 417-435.
[184]Hossein Lavassani, S.H., H. Alizadeh, and P. Homami, (2020). Optimizing tuned mass damper parameters to mitigate the torsional vibration of a suspension bridge under pulse-type ground motion: A sensitivity analysis. Journal of Vibration and Control, 26(11-12): p. 1054-1067.
[185]Ab Talib, M.H., I.Z. Mat Darus, and P. Mohd Samin, (2019). Fuzzy logic with a novel advanced firefly algorithm and sensitivity analysis for semi-active suspension system using magneto-rheological damper. Journal of Ambient Intelligence and Humanized Computing, 10(8): p. 3263-3278.
[186]Xiaomin, X., et al., (2009). Parameter estimation and its sensitivity analysis of the MR damper hysteresis model using a modified genetic algorithm. Journal of Intelligent Material Systems and Structures, 20(17): p. 2089-2100.
[187]Greco, R., G.C. Marano, and A. Fiore, (2016). Performance–cost optimization of tuned mass damper under low‐moderate seismic actions. The Structural Design of Tall and Special Buildings, 25(18): p. 1103-1122.
[188]Zhong, J., et al., (2020). Risk-informed sensitivity analysis and optimization of seismic mitigation strategy using Gaussian process surrogate model. Soil Dynamics and Earthquake Engineering, 138: p. 106284.
[189]Zhang, X. and Z. Kang, (2014). Dynamic topology optimization of piezoelectric structures with active control for reducing transient response. Computer Methods in Applied Mechanics and Engineering, 281: p. 200-219.
[190]Miguel, L.F.F., L.F.F. Miguel, and R.H. Lopez, (2014). Robust design optimization of friction dampers for structural response control. Structural Control and Health Monitoring, 21(9): p. 1240-1251.
[191]Miguel, L.F.F., L.F. Fadel Miguel, and R.H. Lopez, (2015). A firefly algorithm for the design of force and placement of friction dampers for control of man-induced vibrations in footbridges. Optimization and Engineering, 16(3): p. 633-661.
[192]Csaba, G. and M. Andersson. (1997). Optimization of Friction Damper Weight, Simulation and Experiments, Location., pages.
[193]Sanliturk, K.Y., et al., (1999). Friction Damper Optimization: Simulation of Rainbow Tests. Journal of Engineering for Gas Turbines and Power, 123(4): p. 930-939.
[194]Panning, L., W. Sextro, and K. Popp. (2000). Optimization of Interblade Friction Damper Design, Location., pages.
[195]Ye, S. and K.A. Williams, (2006). Torsional friction damper optimization. Journal of Sound and Vibration, 294(3): p. 529-546.
[196]Zou, S., et al., (2016). Design optimization of friction damper with coupling mechanism for seismic response of base isolated structure. Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 29(2): p. 201-206.
[197]Ontiveros-Pérez, S.P., L.F. Fadel Miguel, and L.F. Fadel Miguel, (2017). Robust Simultaneous Optimization of Friction Damper for the Passive Vibration Control in a Colombian Building. Procedia Engineering, 199: p. 1743-1748.
[198]Ontiveros-Pérez, S.P., L.F.F. Miguel, and L.F.F. Miguel, (2017). Optimization of location and forces of friction dampers. REM-International Engineering Journal, 70: p. 273-279.
[199]Miguel, L.F.F., L.F.F. Miguel, and R.H. Lopez, (2018). Methodology for the simultaneous optimization of location and parameters of friction dampers in the frequency domain. Engineering Optimization, 50(12): p. 2108-2122.
[200]Nabid, N., I. Hajirasouliha, and M. Petkovski, (2019). Adaptive low computational cost optimisation method for performance-based seismic design of friction dampers. Engineering Structures, 198: p. 109549.
[201]Ghorbani, H.R. and F.R. Rofooei, (2020). A novel double slip loads friction damper to control the seismic response of structures. Engineering Structures, 225: p. 111273.
[202]Fallah, N. and S. Honarparast, (2013). NSGA-II based multi-objective optimization in design of Pall friction dampers. Journal of Constructional Steel Research, 89: p. 75-85.