بررسی تاثیر عدم قطعیت پارامترهای سازه ای بر پاسخ آنالیز دینامیکی افزایشی ساختمان های قاب خمشی فولادی متوسط

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشکده فنی و مهندسی، دانشگاه صنعتی خاتم الانبیا(ص) بهبهان، بهبهان، ایران

2 استادیار، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه صنعتی خاتم الانبیا(ص) بهبهان

3 شرکت بهره برداری از سد و نیروگاه و شبکه های آبیاری مارون، بهبهان، ایران

4 استادیار، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه صنعتی خاتم الانبیا(ص) بهبهان، بهبهان، ایران

5 انشکده فنی و مهندسی، دانشگاه صنعتی خاتم الانبیا(ص) بهبهان، بهبهان، ایران

چکیده

منابع متعدد عدم قطعیت در تحلیل و طرح قاب های خمشی فولادی وجود دارند که تصادفی فرض کردن هر یک از آن ها می تواند اثر قابل توجهی در تامین یا عدم تامین الزامات عملکردی سازه داشته باشد. از جمله این عوامل می توان به پارامترهای سازه ای اشاره کرد که مهمترین آنها تنش تسلیم، مدول الاستیسیته، هندسه مقاطع و جرم سازه است. ارزیابی میزان تاثیر این عوامل به نحوه توزیع و مدلسازی پارامترها بستگی دارد. در این پژوهش سه نوع توزیع رایج یکنواخت، نرمال و لگ نرمال برای پارامترهای سازه ای جرم، تنش تسلیم، مدول الاستیسیته و هندسه مقاطع که ماهیتی تصادفی دارند در نظر گرفته شده و با بهره گیری از روش مونت کارلو اثر عدم قطعیت این پارامترها بر عملکرد لرزه ای سازه های فولادی بررسی می شود. مطالعات بر روی 4 سازه 3، 5، 10 و 15 طبقه قاب خمشی فولادی با شکل پذیری متوسط که بر اساس آیین نامه های ایران طراحی شده اند، انجام می شود. به منظور مدلسازی سازه ها و انجام تحلیل دینامیکی افزایشی از نرم افزار اپنسیس و به منظور ارزیابی عملکرد لرزه ای سازهها از منحنی های شکنندگی استفاده شده است. نتایج تحقیق نشان می دهد نوع توزیع تاثیر قابل ملاحظه ای در نتایج اعمال عدم قطعیت ها ندارد. همچنین مشاهده می شود با در نظر گرفتن عدم قطعیت جرم، بازه شتاب های حالت حدی فروریزش و ایمنی جانی به مقدار قابل توجهی افزایش می یابد که نشان از تاثیر قابل توجه عدم قطعیت جرم نسبت به سایر پارامترها دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation the effect of structural parameters uncertainty on the response of incremental dynamic analysis of intermediate steel moment resisting frame structures

نویسندگان [English]

  • vahid barzian 1
  • sasan motaghed 2
  • amin Mehrabi Moghaddam 3
  • Seyed Ali Asghari Pari 4
  • lotfollah emadali 5
1 Behbahan Khatam Alanbia University of Technology
2 Civil Engineering, Faculty of Engineering, Behbahan Khatam Alanbia University of Technology
3 Maroon Dam Power Plant & Irrigation Network Operation Company
4 Faculty of Engineering, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
5 Faculty of Engineering, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
چکیده [English]

There are several sources of uncertainty in the analysis and design of steel moment resisting frames, the random assumption of each of which can have a significant effect on the satisfiction of performance requirements of the structure. Among these factors, structural parameters can be mentioned, the most important of which are yield stress, modulus of elasticity, sections geometry and structural mass. Evaluating the impact of these factors depends on how the parameters are distributed and modeled. In this study, three common types of uniform, normal and log normal distributions for the parameters of mass structures, yield stress, modulus of elasticity and sections geometry that are random in nature are considered and using Monte Carlo method, the effect of uncertainty of these parameters is considered. The seismic performance of steel structures is investigated. Studies are performed on 4 structures of 3, 5, 10 and 15 floors of steel moment resisting frames with medium ductility, which are designed according to Iranian regulations. In order to model the structures and perform incremental dynamic analysis, Open Sees software was used .In order to evaluate the seismic performance of the structures, fragility curves were used. The results show that the type of distribution does not have a significant effect on the results of applying uncertainties. It is also observed that considering the mass uncertainty, increases the acceleration range in the Collapse Prevention (CP) and life safety (LS), which shows the significant effect of mass uncertainty compared to other parameters.

کلیدواژه‌ها [English]

  • Uncertainties
  • statistical distributions
  • performance limit states
  • Monte Carlo simulations
  • structural fragility curves
 [1] Khojastehfar, E., Darbanian, R.,Mohammadrezaee, A., Sharifi, Y., Seismic reliability of special steel moment frames, designed based on the third and fourth editions of 2800 standard in the performance framework of FEMA-350 regulation, 3rd National conference and 1st international conference on applied research in civil engineering, architecture and urbuan planning, March 9-10, 2016, Tehran, Iran. (In Persian).
[2] Asgarian B, Sadrinezhad A, Alanjari P. "Seismic performance evaluation of steel Moment resisting frames through incremental dynamic analysis". Journal of Constructional  Steel Research  2010;66:178–90.
[3] SAC Joint Venture. (2000b). ‘‘Recommended seismic evaluation and upgrade criteria for existing welded steel moment frame buildings.’’ Rep. No. FEMA-351, Federal Emergency Management Agency, Washington, D.C.
[4] Cornell; C.A.; Jalayer; F.; Hamburger; R.O.; Foutch; D.A.; ''Probabilistic basis for the 2000 SAC Federal Emergency Management Agency steel moment frame guidelines''; Journal of Structural Engineering; ASCE; 128(4); 2001; 526–533
[5] Vamvatsikos, D., & Fragiadakis, M., (2010), Incremental dynamic analysis for estimating seismic performance sensitivity and uncertainty. Earthquake engineering & structural dynamics, 39(2), 141-163.‏
[6] Su, L., Wan, H. P., Dong, Y., Frangopol, D. M., & Ling, X. Z. (2021). Efficient uncertainty quantification of wharf structures under seismic scenarios using Gaussian process surrogate model. Journal of Earthquake Engineering, 25(1), 117-138.‏
[7] Ganjavi, B., & Gholamrezatabar, A. (2018). More adequate seismic design force pattern for yielding structures considering structural and ground motion uncertainties effects. The Structural Design of Tall and Special Buildings, 27(16), e1537.‏
[8] Jough, F. K. G., & Aval, S. B. (2018). Uncertainty analysis through development of seismic fragility curve for an SMRF structure using an adaptive neuro-fuzzy inference system based on fuzzy C-means algorithm. Scientia Iranica, 25(6), 2938-2953.‏
[9] Dyanati, M., Huang, Q., & Roke, D. (2017). Cost-benefit evaluation of self-centring concentrically braced frames considering uncertainties. Structure and Infrastructure Engineering, 13(5), 537-553.‏
[10] Maddahi, M., & Gerami, M., & Naderpour, H. (2021). The Effect of Structural Uncertainties of Steel Shear Wall on Seismic Performance of Rehabilitated Moment Frame. JOURNAL OF STRUCTURAL AND CONSTRUCTION ENGINEERING, 8(5 ), 130-147. https://www.sid.ir/en/journal/ViewPaper.aspx?id=844663
[11] Zolfaghari, M. R., BEHESHTI, A. S., & Khojastehfar, E. (2015), Uncertainty analysis using fuzzy randomness method towards development of fragility curves for moment-resisting steel structures.‏
[12] Khojastehfar, E., Papi, M., (2019), Estimation of fragility collapse curves of steel moment frame considering uncertainties using artificial neural network, 10th conference on steel & structure, December 10-12, Tehran, Iran. ( In Persian).
 [13] Shokrollahi-Yancheshmeh, B., Mohebkhah, A., Mahdavi Adeli, M. (2022). The Effect of Capacity Uncertainty on the Seismic Hazard Demand Curve Estimation of Steel Moment Resisting Frames. Amirkabir Journal of Civil Engineering, 53(12), 1-1. doi: 10.22060/ceej.2020.18577.6903
[14] Asgarian,B., and Ordoubadi,B., (2016), Effects of structural uncertainties on seismic performance of steel moment resisting frames, Journal of Constructural Steel research,Vol. 120, Pp.132–42.
[15]Baker, J.W.; Cornell, C.A.; "Spectral shape, epsilon and record selection", Earthquake Engineering & Structural Dynamic, 35(9), pp:1077–1095, 2006.
[16] Banazadeh M, Jalali SA, Abolmaali, A., (2010), Seismic performance of reduced beam section moment frames considering record-to-record uncertainties. In: 9th US national and 10th Canadian conference on earthquake engineering. [17]Baker, J.W.; Cornell, C.A.; "A vector-valued ground motion intensity measure consisting of spectral acceleration and epsilon", Earthquake Engineering & Structural Dynamics,34(10), pp: 1193-1217, 2005.
[18] Yazdani, A., A. Mehrabi Moghaddam, and M. S. Shahidzadeh. "Parametric Assessment of Uncertainties in Reliability Index of Reinforced Concrete MRF Structures Using Incremental Dynamic Analysis." Amirkabir Journal of Civil Engineering 49.4 (2018): 755-768.
[19] Iranian National Building Code for Structural Loading-Standard 519 (part 6), Ministry of Housing and Urban Development, Tehran, Iran, in Persian, 2013.
[20] Iranian National Building Code, part 10, steel structure design. Tehran(Iran): Ministry of Housing and Urban Development; 2013. (In Persian).
[21] Iranian Code of Practice for Seismic Resistant Design of Building, Standard No. 2800, forth Revision, Building and Housing Research Center, Tehran,Iran, in Persian, 2015.
[22] Barzian, vahid (2017), A framework for applying structural uncertainty in demand and capacity (DCFD) format, a case study steel structures. Behbahan Khatam Alanbia University of Technology, Behbahan, Iran( In Persian).
[23] 49- Douglas Hubbard "How to Measure Anything: Finding the Value of Intangibles in Business" pg. 46, John Wiley & Sons, 2007.
[24] British Standard, BS EN 10029:1991, Tolerances on dimensions, shape and mass for hot rolled steel plates 3 mm thick or above European Standard EN 10029, UDC 669.14-122.4-41:621.753.14:620.1
[25] Dolsek, M. 2009."Incremental dynamic analysis with consideration of modelling uncertainties" Earthquake Engineering and Structural Dynamics 38(6): 805–825.
[26] Lignos D. Sidesweay "collapse of deteriorating structural systems under seismic excitations". Ph.D. thesis. Stanford University. 2008.
[27] Nicknam, A., Farhangdoust, M., Mazarei, A., Ganjvar, M. (2018). Seismic Design Parameters Assessment of Special Steel Moment Resisting Frames Using the Collapse Margin Ratio (CMR) Method. Amir kabir Journal of Civil Engineering, 50(2), 335-354. doi: 10.22060/ceej.2017.11866.5091 (In Persian).
[28] Altoontash, A., 2004, Simulation and damage models for performance assessment of reinforced concrete beam-column joints, PhD Dissertation, Stanford University, California, USA
[29] Shome, N., Cornell, C.A., (1999), Probabilistic seismic demand analysis of nonlinear structures, Stanford University, Report No. RMS-35.
[30] Elkady, A., & Lignos, D. G. (2014). Modeling of the composite action in fully restrained beam‐to‐column connections: implications in the seismic design and collapse capacity of steel special moment frames. Earthquake Engineering & Structural Dynamics, 43(13), 1935-1954.
[31] Jalayer, F., Cornell, C.A. (2003). ,A technical framework for probability-based demand and capacity factor (DCFD) seismic formats, Report No. RMS-43, RMS Program, Stanford University, Stanford.
[32] Vamvatsikos, D., Cornell, C.A. (2001), Incremental dynamic analysis, Earthquake Engineering and Structural Dynamics, 31, pp: 491-514.
[33] SAC Joint Venture. (2000a); "Recommended seismic design criteria for new steel moment frame buildings; Rep. No. FEMA-350", Federal Emergency Management Agency; Washington, D.C., 2000.
[34] Prestandard and Commentary for the Seismic Rehabilitation of Buildings FEMA 356. American Society of Civil Engineering. Federal Emergency Management Agency Washington, D.C., 2000.