تعیین ضرایب فشار باد برمخازن ذخیره استوانه‌ای، با استفاده از آزمایش تونل باد و مدل‌سازی عددی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری سازه ،واحد شاهرود،دانشگاه آزاد اسلامی -شاهرود-ایران

2 استادیار گروه عمران ،واحد شاهرود–دانشگاه آزاد اسلامی ،شاهرود،ایران

3 استادیار گروه عمران، واحد دامغان –دانشگاه آزاد اسلامی دامغان ،ایران

4 استادیار،دانشگاه دامغان–دامغان–ایران

چکیده

بار باد، یکی از بارهای جانبی تأثیرگذار در طراحی‌ مخازن ذخیره استوانه‌ای می‌باشد. درروش استاتیکی، یکی از پارامترها در محاسبه نیروی باد وارد برسازه که وابسته به هندسه مخزن می‌باشد، ضریب فشار است. راه‌های یافتن این ضریب، استفاده از آزمایش تونل باد و یا استفاده از مدل‌سازی عددی در نرم‌افزار بر مبنای روش دینامیک سیالات محاسباتی (CFD) است. برآورد دقیق این ضرایب فشار در تمام سطح مخزن جهت محاسبه بار کمانشی و کنترل دیگر معیارهای طراحی از اهمیت بسزایی برخوردار است. در این مقاله، ضرایب فشار باد بر روی مخازن ذخیره استوانه‌ای با نسبت ارتفاع به قطر 0.25 و 0.5 و 1 و 1.5با استفاده از آزمایش تونل باد و مدل‌سازی عددی، بر مبنای روش دینامیک سیالات محاسباتی با استفاده از نرم‌افزار ANSYS به‌دست‌آمده است. با مقایسه نتایج ضرایب فشار باد، مشاهده می‌شود با افزایش نسبت ارتفاع به قطر مخزن، بیشینه مقدار ضریب فشار باد منفی(مکش)، افزایش می‌یابد. ماکزیمم فشار منفی در =90oɵ، برابر 2.2 - و بیشینه فشار مثبت در =0oɵ(مقابل باد) برابر 1 به دست آمد . در این تحقیق معادله حاکم بر ضرایب فشار باد بر روی محیط مخازن استوانه‌ای ذخیره، ارائه‌شده است که در طراحی مخازن ذخیره، می‌توان از این معادله استفاده کرد. همچنین ضرایب فشار بر روی مخزن ذخیره ساخته‌شده با استفاده از ورق‌های موج‌دار نیز ارائه‌شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of wind pressure coefficients on cylindrical storage tanks, using wind tunnel testing and numerical modeling

نویسندگان [English]

  • hamidreza davarzani 1
  • ahmad ganjali 2
  • hossein sadeghi 3
  • rasul mohebbi 4
1 Phd Student, Department of Civil Engineering, Shahroud Branch, Islamic Azad University, Shahroud, Iran
2 Assistant Professor, Department of Civil Engineering , Shahroud Branch, Islamic Azad University,Shahroud, Iran
3 Assistant Professor, Department of Civil Engineering , Damghan Branch, Islamic azad university,Damghan, Iran
4 School of Engineering, Damghan University P.O. Box: 3671641167, Damghan, Iran
چکیده [English]

Wind load is one of the influential lateral loads in the design of cylindrical storage tanks. In the static method, one of the parameters in calculating the wind force entering the structure, which depends on the geometry of the tank, is the pressure coefficient. Ways to find this coefficient are using wind tunnel tests or using numerical modeling in software based on computational fluid dynamics (CFD). Accurate estimation of these pressure coefficients in the whole surface of the tank is very important for calculating the buckling load and controlling other design criteria. In this paper, wind pressure coefficients on cylindrical storage tanks with height to diameter ratios of 0.25, 0.5, 1 and 1.5 using wind tunnel testing and numerical modeling based on computational fluid dynamics using ANSYS software have been obtained. Comparing the results of wind pressure coefficients, it is observed that with increasing the ratio of height to tank diameter, the maximum value of negative air pressure coefficient (suction) increases. The maximum negative pressure at ɵ= 90o was equal to 2.2 and the maximum positive pressure at ɵ= 0o (against wind) was 1. In this research, the equation governing wind pressure coefficients on the environment of storage cylindrical tanks is presented, which can be used in the design of storage tanks. The pressure coefficients on the storage tank made using corrugated sheets are also presented.

کلیدواژه‌ها [English]

  • Wind load
  • pressure coefficient
  • storage tanks
  • wind tunnel
  • CFD
[1]-Cheng, C. M., & Fu, C. L. (2010). Characteristic of wind loads on a hemispherical dome in smooth flow    and turbulent boundary layer flow. Journal of wind engineering and industrial aerodynamics, 98(6-7), 328-344.
[2]- Qiu Y, Sun Y, Wu Y, Tamura Y, Modelling the mean wind loads on cylindrical roofs with consideration of the Reynolds number effect in uniform flow with low turbulence, Wind Engineering and Industrial
[3]-Rong, B., Yin, S., Wang, Q., Yang, Y., Qiu, J., Lin, C., & Zhang, R. (2021). Simulation and Analysis of Wind Pressure Coefficient of Landslide-Type Long-Span Roof Structure. Advances in Civil Engineering, 2021.
[4]- Orlando, M. “Wind Induced Interference Effects on Two Adjacent Cooling”, J. Engineering Structures, Vol. 23, pp. 979-992, 2001.
[5]-Shokrzadeh A R and Sohrabi M R,Strengthening effect of spiral stairway on the buckling behavior metal tanks under wind and vacuum pressures, Thin-Walled Structures, 106(2016) 437-447.
[6]- Sadegh, H , Heristchian, M.Aziminejad, A, & Nooshin, H. (2017). Wind effect on grooved and scallop domes. Engineering Structures, 148, 436-450
[7]- Sadeghi, H; Heristchian, M; Aziminejad, A, & Nooshin, H (2018). CFD simulation of hemispherical domes: structural flexibility and interference factors. Asian Journal of Civil Engineering, 19(5), 535-551.
[8] Kim, R. W., Lee, I. B., Yeo, U. H., & Lee, S. Y. (2019). Estimating the wind pressure coefficient for single-span greenhouses using a large eddy simulation turbulence model. Bio systems Engineering, 188, 114-135.
[9]-Sun, T.F., Gu, Z.F., Zhou, L.M., Li, P.H., and Cai, G.L. “Full-scale measurement and wind tunnel testing of Wind loading On two neighboring cooling towers”, Int. J. wind engineering and industrial aerodynamics, Vol. 43, pp. 2213-2224, 1992.
[10]- Hu, W., Bohra, H., Azzuni , E., & Guzey , S. (2019). The uplift effect of bottom plate of aboveground storage tanks subjected to wind loading. Thin-Walled Structures, 144, 106241.
[11] - Chen, Z., Li, H., Wang, X., Yu, X., & Xie, Z. (2019). Internal and external pressure and its non-Gaussian characteristics of long-span thin-walled domes. Thin-Walled Structures, 134, 428-441.
[12]- LI, Ling Yao; HE, Shi Chang; HE, Xu Hui. Aeroelastic model design and sensitivity analysis of a complicated steel truss arch tower to skew incident winds based on wind tunnel tests. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 214:104646.‏
[13]-Liu, H., Qu, W. L., & Li, Q. S. (2011). Comparison between wind load by wind tunnel test and in-site measurement of long-span spatial structure. Wind and Structures, 14(4), 301-319.
[14]- UBERTINI, F.; GIULIANO, F. Computer simulation of stochastic wind velocity fields for structural response analysis: comparisons and applications. Adv Civ Eng 2010.‏
[15]- DENOËL, Vincent; BLAISE, Nicolas. Optimal processing of wind tunnel measurements in view of stochastic structural design of large flexible structures. Intech open, 2011.‏
[16]- FOUTCH, Douglas A.; SAFAK, E. Torsional vibration of wind-excited structures. In: Engineering Mechanics. ASCE, 1979. p. 255-258.‏
[17]- Li, Yan, Zhengliang Li, Eric Savory, Yongli Zhong, and Zhitao Yan. "Wind tunnel measurement of overall and sectional drag coefficients for a super high-rise steel tube transmission tower." Journal of Wind Engineering and Industrial Aerodynamics 206 (2020): 104363.