تعیین ضرایب فشار بادبر روی سقفهای استوانه ای (چلیک)

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی عمران، دانشگاه غیرانتفاعی شاهرود،شاهرود،ایران

2 استادیار، گروه مهندسی عمران، واحد دامغان، دانشگاه آزاد اسلامی، دامغان،ایران

3 کارشناس، گروه مهندسی عمران، واحد دامغان، دانشگاه آزاد اسلامی، دامغان،ایران

چکیده

سقف‌های نیمه استوانه‌ای (چلیک)نوعی سازه فضاکار هستند که به‌منظور پوشش دهانه‌های بزرگ مورداستفاده قرار می‌گیرند، در این سازه‌ها به دلیل بار مرده کم، بار باد اثر بیشتری بر روی این نوع سازه‌ها خواهد داشت. در محاسبه نیروی باد یکی از ضرایبی که به هندسه سازه ارتباط دارد ضریبCp است که این ضریب برای تعدادی از سازه‌های متداول در آیین‌نامه‌ها ارائه‌شده است، در صورت عدم وجود این ضرایب در آیین‌نامه‌ها میتوان از روش آزمایش تونل باد با ساخت مدل سازه و قرار دادن در تونل باد و به دست آوردن ضرایب فشار باد استفاده کرد. راه حلی دیگر مدل‌سازی تونل باد با استفاده از نرم‌افزار است، از روش دینامیک سیالات محاسباتی(CFD) می‌توان برای محاسبه تأثیر بار باد بر سازه و محاسبه ضرایب آن استفاده کرد. در دهه‌های اخیر، این روش هم‌زمان با افزایش توان محاسباتی سخت‌افزارها، به ابزاری قدرتمند برای مدل‌سازی جریان باد تبدیل‌شده است. دراین تحقیق مدل‌سازی عددی جریان باد بر سطح سازه‌ای نیمه استوانه (چلیک) صورت گرفته است و تعیین ضرایب فشار باد، به کمک نرم‌افزار Ansys انجام‌شده است. ضرایب فشار باد برای چلیک با سه نسبت ارتفاع به دهانه1/0، 3/0 و 5/0 ارائه‌شده و معادله حاکم بر ضرایب فشار باد به‌دست‌آمده است همچنین راستی آزمایی مدل های عددی با نتایج حاصل از آزمایش تونل باد انجام شده است .

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of wind pressure coefficients on cylindrical roofs (Barrel roofs)

نویسندگان [English]

  • vahid bani 1
  • hossein sadeghi 2
  • alireza toosi 3
1 MS.c Student, Department of civil engineering, shahrood non-profit and non-government higher education institute, shahrood, iran
2 Assistant Professor, Department of Civil Engineering, Damghan Branch, Islamic Azad University, Damghan, Iran
3 Bachelor Graduated, Department of Civil Engineering, Damghan Branch, Islamic Azad University, Damghan, Iran
چکیده [English]

Cylindrical (Barrel) roofs are a type of space structure that are used to cover large openings. In these structures, due to low dead load, wind load has a greater effect on this type of structure. In calculating wind force, one of the coefficients related to the geometry of the structure is the Cp coefficient, which is provided for a number of common structures in the codes. If these coefficients are not present in the codes, the method can be Wind tunnel testing should be used by constructing a structural model and placing it in the wind tunnel and obtaining the wind pressure coefficients. Another solution is to model the wind tunnel using software. Computational fluid dynamics (CFD) method can be used to calculate the load effect. In recent decades, this method has become a powerful tool for wind flow modeling as the computing power of hardware increases. In this research, numerical modeling of wind flow on the surface of a cylindrical structure (Barrel) has been done and the determination of wind pressure coefficients has been done with the used of Ansys software. Wind pressure coefficients for Barrel roof with three height to span ratios of 0.1, 0.3 and 0.5 are presented. Also, the equation these wind pressure coefficients is obtained.

کلیدواژه‌ها [English]

  • Cp
  • CFD
  • Wind Load
  • wind tunnel
  • barrel
[1] Hanson, T., Smith, F., Summers, D., & Wilson, C. B. (1982). Computer simulation of wind flow around buildings. Computer-Aided Design, 14(1), 27-31.
[2] Hoxey, R. P., & Richardson, G. M. (1983). Wind loads on film plastic greenhouses. Journal of Wind Engineering and Industrial Aerodynamics, 11(1-3), 225-237.
[3] Toy, N., & Tahouri, B. (1988). Pressure distributions on semi-cylindrical structures of different geometrical cross-sections. Journal of Wind Engineering and Industrial Aerodynamics, 29(1-3), 263-272.
[4] HOLMES, J., & PATERSON, D. (1992). Mean wind pressures on arched-roof buildings by computation. 2nd Int. Colloq. on Bluff-body Aerodynamics and Applications, Melbourne. Proceedings to be published.
[5] Letchford, C. W., & Sarkar, P. P. (2000). Mean and fluctuating wind loads on rough and smooth parabolic domes. Journal of wind engineering and industrial aerodynamics, 88(1), 101-117.
[6] Balbastro, G. C., & Sonzogni, V. E. (2007). Simulation of wind tunnel experiments using CFD." Mecánica Computacional 44: 3779-3787.
Simulation of a wind tunnel test applying CFD. Computational Mechanics, (44), 3779-3787.
[7] Cheng, C. M., & Fu, C. L. (2010). Characteristic of wind loads on a hemispherical dome in a smooth flow and turbulent boundary layer flow. Journal of wind engineering and industrial aerodynamics, 98(6-7), 328-344.
[8] Vizotto, I., & Ferreira, A. M. (2015). Wind force coefficients on hexagonal free form shell. Engineering Structures, 83, 17-29.
[9] Sadeghi, H., Heristchian, M., Aziminejad, A., & Nooshin, H. (2017). Wind effect on grooved and scallop domes. Engineering Structures, 148, 436-450.
[10] Sadeghi, H., Heristchian, M., Aziminejad, A., & Nooshin, H. (2018). CFD simulation of hemispherical domes: structural flexibility and interference factors. Asian Journal of Civil Engineering, 19(5), 535-551.
[11]Cao, Y., & Tamura, T. (2020). Large-eddy simulation study of Reynolds number effects on the flow around a wall-mounted hemisphere in a boundary layer. Physics of Fluids, 32(2), 025109.
[12] Qiu, Y., Sun, Y., Wu, Y., & Tamura, Y. (2014). Modelling the mean wind loads on cylindrical roofs with consideration of the Reynolds number effect in uniform flow with low turbulence. Journal of Wind Engineering and Industrial Aerodynamics, 129, 11-21.
[13] Liu, H., Qu, W. L., & Li, Q. S. (2011). Comparison between wind load by wind tunnel test and in-site measurement of long-span spatial structure. Wind & Structures, 14(4), 301-319.
[14] Kim, R. W., Lee, I. B., Yeo, U. H., & Lee, S. Y. (2019). Estimating the wind pressure coefficient for single-span greenhouses using a large eddy simulation turbulence model. biosystems engineering, 188, 114-135.
[15] Hu, W., Bohra, H., Azzuni, E., & Guzey, S. (2019). The uplift effect of bottom plate of aboveground storage tanks subjected to wind loading. Thin-Walled Structures, 144, 106241.
[16] Chen, Z., Li, H., Wang, X., Yu, X., & Xie, Z. (2019). Internal and external pressure and its non-Gaussian characteristics of long-span thin-walled domes. Thin-Walled Structures, 134, 428-441.
[17] Kim, Y. C., Yoon, S. W., Cheon, D. J., & Song, J. Y. (2019). Characteristics of wind pressures on retractable dome roofs and external peak pressure coefficients for cladding design. Journal of Wind Engineering and Industrial Aerodynamics, 188, 294-307.
[18] Enajar, A., El Damatty, A., & Nassef, A. (2021). Semi-analytical solution for gable roofs under uplift wind loads. Engineering Structures, 227, 111420.
[19] Code of Practice for Skeletal Steel Space Structures No.400 .(2010). Tehran: Islamic Republic of IranVice presidency for Strategic Planning and Supervision, Office of Deputy for Strategic Supervision, Bureau of Technical Execution System.
[20] ASCE 7-10 ,(2010). Minimum Design Loads and Associated Criteria for Buildings and Other Structures. American Society of Civil Engineers, Reston, Virginia ASCE/SEI 7–10
[21] EC1. (2005), Eurocode 1:Actions on structures. European Committee for Standardisation: Brussels, Belgium, The European Standard EN ,1991-1-4