بررسی آزمایشگاهی و عددی رفتار یک مقطع تقویت شده از ستون های دوجداره فولادی پرشده با بتن تحت بارگذاری چرخه ای

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشگاه آزاد اسلامی واحد تبریز، تبریز، ایران

2 گروه عمران، دانشکده فنی مهندسی، دانشگاه آزاد اسلامی واحد تبریز، تبریز، ایران

3 گروه مهندسی عمران، واحد تبریز ، دانشگاه آزاد اسلامی، تبریز، ایران

چکیده

در این مقاله هدف اصلی بررسی رفتار یک مقطع تقویت شده با سخت کننده های قائم و میلگردهای حلقوی درستون های دوجداره فولادی پرشده با بتن تحت بارگذاری چرخه ای و نیز بار محوری ثابت می باشد. بدین منظور مقطع تقویت شده پیشنهادی با مقطع ساده(تقویت نشده) در این نوع از ستون ها با طول 200 سانتی متر در آزمایشگاه سازه بارگذاری و بررسی شده اند وسپس در نرم افزار آباکوس مدلسازی شده و نمودار چرخه ای نیرو تغییرمکان آن ها استخراج گردیده است. در این تحقیق با طرح مقطع تقویت شده جدیدی از این نوع ستون ها و مقایسه آن بامقطع ساده به بررسی بهبود رفتار لرزه ای این نوع از ستون ها از جمله شکل پذیری، ظرفیت باربری، قابلیت جذب انرژی پرداخته شده است. برای اطمینان از صحت مدل سازی عناصر محدود، نتایج تحلیل های عددی با نتایج آزمایشگاهی مقایسه و از درستی مدل سازی نیز اطمینان حاصل گردید. در ضمن، ستون با مقطع تقویت شده بهبود قابل ملاحظه ای در رفتار چرخه ای آن در مقایسه با مقطع ساده این نوع از ستون ها دارد، طوریکه سخت کننده های قائم و میلگردهای حلقوی پس از زوال جداره خارجی لوله فولادی از افت شدید مقاومت ستون جلوگیری می کنند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental and numerical investigation of the behavior of a Strengthened section of concrete filled double-skin steel tube columns under cyclic loading

نویسندگان [English]

  • Vahid Faramarzzadeh 1
  • Adel Ferdousi 2
  • Yousef Zandi 3
1 PhD student of civil engineering , faculty of civil engineering , islamic azad university , tabriz branch.
2 Department of Civil Engineering, Faculty of Technical and Engineering, Islamic Azad University, Tabriz Branch, Tabriz, Iran
3 Department of Civil Engineering, Faculty of Technical and Engineering, Islamic Azad University, Tabriz Branch, Tabriz, Iran
چکیده [English]

In this paper, the main purpose is to investigate the behavior of a reinforced section with vertical stiffeners and circular stirrups of Concrete filled double-skin steel tube (CFDST) columns under cyclic and fixed axial loading. So, the proposed reinforced section with a simple section (not reinforced) in this type of columns with a length of 200 cm has been loaded and examined in the structural laboratory and then modeled in ABAQUS software and their displacement- force cycle diagram has been extracted. In this research, by designing a new reinforced cross section of this type of columns and comparing it with a simple cross section, the improvement of seismic behavior of this type of columns, including ductility, bearing capacity, and energy absorption capacity, has been investigated. To ensure the accuracy of finite element modeling, the results of numerical analysis were compared with laboratory results and the modeling accuracy was also ensured. In addition, the column with reinforced cross section has a significant improvement in its cyclic behavior compared to the simple cross section of this type of column, so that vertical stiffeners and circular stirrups prevent a sharp drop in column strength after the outer wall of the steel pipe deteriorates.

کلیدواژه‌ها [English]

  • Concrete filled double-skin- steel tube (CFDST) columns
  • Strengthened section
  • Experimental Investigation
  • Finite element method
  • Cyclic loading
[1] M. Elchalakani, X.L. Zhao, R. Grzebieta. (2002). Tests on concrete filled double-skin (CHS outer and SHS inner) composite short columns under axial compression, Thin-Walled Structure. 40:415–441.
[2] Han, L.H, H. Huang, X.L. Zhao. (2009). Analytical behaviour of concrete-filled double skin steel tubular (CFDST) beam-columns under cyclic loading, Thin-Walled Structure. 47:668–680.
[3] Z. Tao, L.H. Han, X.L. Zhao. (2004). Behaviour of concrete-filled double skin (CHS inner and CHS outer) steel tubular stub columns and beam-columns, Journal of Construction Steel Research, 60:1129–1158.
[4] Han, L.H, Li W, Bjorhovde R. (2014). Developments and advanced applications of concrete filled steel tubular (CFST) structures: members. Journal of Construction Steel Research, 100:211–28.
[5] Liang QQ. (2017). Nonlinear analysis of circular double-skin concrete-filled steel tubular columns under axial compression. Engineering Structure,131:639–50.
[6] X.-L. Zhao and R. Grzebieta, (2002). Strength and ductility of concrete filled double skin (SHS inner and SHS outer) tubes, Thin-Walled Structures, volume 40, no. 2, pp. 199–213.
[7] K. Nakanishi, T. Kitada, and H. Nakai,(1999). Experimental study on ultimate strength and ductility of concrete filled steel Advances in Civil Engineering 17 columns under strong earthquake, Journal of Constructional Steel Research, volume 51, no. 3, pp. 297–319.
[8] H. Lu, L.H. Han, and X.-L. Zhao, (2010). Fire performance of self consolidating concrete filled double skin steel tubular columns: experiments, Fire Safety Journal, vol. 45, no. 2, pp. 106–115.
[9] Wei. Li, Tao. Wang, Lin-Hai. Han, (2019). Seismic performance of concrete-filled double-skin steel tubes after exposure to fire: Experiments, Journal of Constructional Steel Research, 154: 209–223.
[10] S. Mohammadbagheri, B. Shekastehband, (2020). Fire resistance of stiffened CFDST columns after earthquake-induced damages, Thin–Walled Structures, 154: 106865.  
[11] B. Shekastehband, A. Taromi, K. Abedi, (2017), Fire performance of stiffened concrete filled double skin steel tubular columns, Fire Safety. J. 88: 13–25.
[12] Han, L.H, Huang, H., Tao, Z., Xiao, L.Z. (2006). Concrete–Filled Double Skin Steel Tubular (CFDST) Beam-Column Subjected to Cyclic Bending. Engineering Structures, Volume 28, pp1698-1714.
[13] Abedi K, Ferdousi A, Afshin H. (2008). A novel steel section for concrete-filled tubular columns. Thin-Walled Structures, Volume 46, 310-19.
[14] Fa-xing Ding, Jiang Zhu, ShanShan Cheng, Xuemei Liu. (2018). Comparative study of stirrup-confined circular concrete- filled steel tubular stub columns under axial loading. Thin-Walled Structures, Volume 123, 294–304.
 
[15] Wei Li, Yu-Xiao Cai, (2019). Performance of CFDST stub columns using high-strength steel subjected to axial compression. Thin-Walled Structures, 141:411–422.
[16] Ran Deng, Xu-Hong Zhou, Xiao-Wei Deng, Ke Ke, Jiu-Lin Bai, Yu-Hang Wang. (2021). Compressive behaviour of tapered concrete-filled double skin steel tubular stub columns. Journal of Constructional Steel Research 184: 106771.
[17] Junchang Ci, Mizan Ahmed, Hong Jia, Shicai Chen, Daxing Zhou, Liqun Hou, (2021). Testing and strength prediction of eccentrically-loaded circular concrete-filled double steel tubular stub-columns. Journal of Constructional Steel Research, 186: 106881.
[18] S. Mohammadbagheri, B. Shekastehband, (2020).  Fire resistance of stiffened CFDST columns after earthquake-induced damages. Thin–Walled Structures, 154:106865.
[19] J.C.M. Ho, C.X.Dong, (2014). Improving strength, stiffness and ductility of CFDST columns by external confinement. Thin-Walled Structures, volume75, 18–29.
[20] Mojtaba Farahi, Amin Heidarpour, Xiao-Ling Zhao, Riadh Al-Mahaidi. (2016). Parametric study on the static compressive behaviour of concrete-filled double-skin sections consisting of corrugated plates. Thin-Walled Structures, volume107, 526–542.
[21]Uenaka, K. (2016). CFDST stub columns having outer circular and inner square sections under compression. Journal of Constructional Steel Research, 120, 1-7.
[22]ACI-318. Building code requirements for reinforced concrete. (2002). Detroit (MI), USA: ACI.
[23]ANSI/AISC360-16, Specification for Structural Steel Buildings. (2016). American Institute of Steel Construction, U.S, Chicago.
[24]ATC-24, Guidelines for cyclic seismic testing of components of steel structures. (1992). Redwood City, CA, USA: Applied Technology Council.
[25]ASTM, E8/E8M-15a, Standard Test Method for Tension Testing of Metallic Materials. (2015). West Conshohocken, USA: ASTM International.
[26]ASTM C39/C39M, Standard test method for compressive strength of cylindrical concrete specimens. (2010).West Conshohocken, PA, USA: American Society for Testing and Materials.
[27] Pagoulatou, M. and Sheehan, T. and Dai, X. H. and Lam, D. (2014).Finite element analysis on the capacity of circular concrete-filled double-skin steel tubular (CFDST) stub columns. Engineering Structures, No.72,102-112.
[28] ABAQUS Version 6.14.4 (2014). ABAQUS Standard User`s Manual, Dassault Systemes Corp, Providence, RI (USA).
[29] Ferdousi A. (2002). Investigation into the behaviour of a novel steel section used for concrete filled tubular columns. Ms. Thesis. Sahand University of Technology.
[30] Ge, H. and Usami, T. (1996). Cyclic test of concrete filled steel box columns. Journal of Structural Engineering , 122(10), 1169-1177.
[31] Han LH. (2007).Concrete-filled steel tubular structures-theory and practice. Beijing (China): Science Press[in Chinese].
[32] Han LH, Yao GH, Zhao XL. (2005). Tests and calculations of hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC). Journal of Constructional Steel Research. 61(9):1241_69.
[33] Han LH, Yao GH, Tao Z. (2007). Performance of concrete-filled thin-walled steel tubes under pure torsion. Thin-Walled Structures. 45(1):24_36.
[34] Mander JB, Priestley MJN, Park R. (1988). Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 114(8):1804–26.