ارزیابی تاثیر طول حفره زیرسطحی بر انتشار امواج رایلی جهت شناسایی مرز دور و نزدیک حفره

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار، دانشگاه صنعتی شیراز

2 دانشجوی کارشناسی ارشد ژئوتکنیک گروه عمران و محیط‌زیست، دانشگاه صنعتی شیراز، شیراز، ایران

3 استادیار گروه مهندسی عمران، واحد شهرکرد، دانشگاه آزاد اسلامی،، شهرکرد، ایران

چکیده

شناسایی زیرسطحی در مواردی نیاز به آزمایشات لرزه‌ای دارد به خصوص زمانی که هدف، شناسایی ناهنجاری در محل مورد نظر باشد، شناسایی و تعیین ابعاد این ناهنجاری ها از این بابت مورد اهمیت است که ممکن است این حفرات دارای اندازه قابل توجه و در نزدیکی سطح زمین باشند و با اعمال بارگذاری و یا هر گونه تغییرات دیگری در محیط خاک موجب ایجاد خطرات جبران ناپذیری گردد. از روش های لرزه ای می‌توان جهت شناسایی قنات، اکتشافات معدنی، نفت و گاز نیز بهره گرفت. .با توجه به روش های گوناگون شناسایی ناهنجاری های زیرسطحی، در این مقاله از روش تحلیل چند ایستگاهی امواج سطحی استفاده شده است که بسیار سریع و مقرون به صرفه می باشد. در این راستا با شبیه سازی در محیط نرم افزار اجزا محدود اباکوس تاثیر ابعاد طولی حفره های کم عمق زیرسطحی مورد ارزیابی واقع شده است. حفره ها به طول های متفاوت در زیر سطح زمین قرار گرفته اند و میدان امواج در فضای زمان-فاصله و منحنی پراکندگی و نمودار ها در فضای فرکانس-فاصله بعد از فیلتر بررسی شده اند. نتایج به دست آمده در حوزه زمان-فاصله نشان دادند برای حفره به طول 2، 4، 6 و 8 متر امواج بازگشتی متناسب با افزایش طول حفره، از مرز دور و مرز نزدیک حفره با فاصله زمانی بیشتری از همدیگر منتشر می شوند و می توان مرز های طولی حفره را از طریق امواج بازگشتی با وضوح بیشتر بعد از فیلتر در حوزه زمان-فاصله و انرژی بیشتر در فضای فرکانس-فاصله شناسایی نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of subsurface cavity length on Rayleigh wave propagation to identify near and far boundary of the cavity

نویسندگان [English]

  • Hossein Rahnema 1
  • Mahmood Rasekh 2
  • Sohrab Mirassi 3
1 Assistant Professor, Department of Civil and Environmental Engineering, Shiraz University of Technology, Shiraz, Iran
2 M. Sc. Student, Department of Civil and Environmental Engineering, Shiraz University of Technology, Shiraz, Iran
3 Assistant Professor, Department of Civil Engineering, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
چکیده [English]

Subsurface identification in some cases requires seismic testing, especially when the goal is to identify anomalies at the site. Identifying and determining the dimensions of these anomalies is important because these cavities may be of considerable size and close to the ground. And cause irreversible risks by applying loading or any other changes in the soil environment. Seismic methods can also be used to identify aqueducts, mineral, oil and gas exploration. Due to various methods of identifying subsurface anomalies, in this paper, the multi-station surface wave analysis method is used, which is very fast and cost-effective. In this regard, by simulating in Abacus, finite element software environment, the effect of longitudinal dimensions of shallow subsurface cavities has been evaluated. The cavities are located at different lengths below the ground and the waves field in the time-offset and dispersion curves and graphs in the frequency-offset after the filter are examined. The obtained results in the time-distance showed that for a cavity with a length of 2, 4, 6 and 8 meters, the scattered waves are emitted from the far and near the face of the cavity with a longer time distance from each other in proportion to the increase in the length of the cavity. It can be concluded that the near and far boundary of cavity could be determined by using high resolution obtained data after filtering in time-distance domain, and more energy data in frequency-distance domain.

کلیدواژه‌ها [English]

  • Longitutal dimentions
  • Seismic waves
  • Rayleigh waves
  • Cavity
  • MASW
  • Disspersion curve
  • Wave field
  • F-K filter
  1. McMechan, G.A. and M.J. Yedlin, Analysis of dispersive waves by wave field transformation. Geophysics, 1981. 46(6): p. 869-874.
  2. Gabriels, P., R. Snieder, and G. Nolet, In situ measurements of shearwave velocity in sediments with highermode Rayleigh waves. Geophysical prospecting, 1987. 35(2): p. 187-196.
  3. Park, C.B., R.D. Miller, and J. Xia, Multichannel analysis of surface waves. Geophysics, 1999. 64(3): p. 800-808.
  4. Walters, S.L., R.D. Miller, and J. Xia. Near surface tunnel detection using diffracted P-waves: A feasibility study. in 2007 SEG Annual Meeting. 2007. OnePetro.
  5. Schwenk, J.T., et al., Surface-wave methods for anomaly detection. Geophysics, 2016. 81(4): p. EN29-EN42.
  6. Phillips, C., G. Cascante, and J. Hutchinson. Detection of underground voids with surface waves. in 13th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems. 2000. European Association of Geoscientists & Engineers.
  7. Rahnema, H. and R.B. Bijari, 3D numerical modeling of multi-channel analysis of surface wave in homogeneous and layered concrete slabs. Journal of Civil Structural Health Monitoring, 2018. 8(1): p. 161-170.
  8. Phillips, C., G. Cascante, and D.J. Hutchinson, Evaluation of horizontal homogeneity of geomaterials with the distance analysis of surface waves. Canadian Geotechnical Journal, 2004. 41(2): p. 212-226.
  9. Sloan, S., et al., Depth estimation of voids using backscattered surface waves, in SEG technical program expanded abstracts 2016. 2016, Society of Exploration Geophysicists. p. 2362-2366.
  10. Sloan, S.D., et al., Void detection using near-surface seismic methods, in Advances in near-surface seismology and ground-penetrating radar. 2010, Society of Exploration Geophysicists, American Geophysical Union …. p. 201-218.
  11. Almalki, H. and K. Munir, Efficiency of seismic attributes in detecting near-surface cavities. Arabian Journal of Geosciences, 2013. 6(8): p. 3119-3126.
  12. Rahnema, H., S. Mirassi, and G. Dal Moro, Cavity effect on Rayleigh wave dispersion and P-wave refraction. Earthquake Engineering and Engineering Vibration, 2021. 20(1): p. 79-88.
  13. Mirassi, S. and H. Rahnema, Deep cavity detection using propagation of seismic waves in homogenous half-space and layered soil media. Asian Journal of Civil Engineering, 2020. 21(8): p. 1431-1441.
  14. Rahnema, H., et al., Detection of subterranean cavities and anomalies using multichannel analysis of surface wave. Geomechanics and Geoengineering, 2020: p. 1-14.
  15. Shao, G.-z., G.P. Tsoflias, and C.-j. Li, Detection of near-surface cavities by generalized S-transform of Rayleigh waves. Journal of Applied Geophysics, 2016. 129: p. 53-65.
  16. Castaings, M., et al., Finite element predictions for the dynamic response of thermo-viscoelastic material structures. The Journal of the Acoustical Society of America, 2004. 115(3): p. 1125-1133.
  17. Hesse, D. and P. Cawley, Surface wave modes in rails. The Journal of the Acoustical Society of America, 2006. 120(2): p. 733-740.
  18. Luo, W. and J.L. Rose, Phased array focusing with guided waves in a viscoelastic coated hollow cylinder. The Journal of the Acoustical Society of America, 2007. 121(4): p. 1945-1955.
  19. Drozdz, M.B., Efficient finite element modelling of ultrasound waves in elastic media. 2008, Imperial College London.
  20. Rajagopal, P., et al., On the use of absorbing layers to simulate the propagation of elastic waves in unbounded isotropic media using commercially available finite element packages. Ndt & e international, 2012. 51: p. 30-40.
  21. Davoodi, M., et al., Application of perfectly matched layer to soil-foundation interaction analysis. Journal of Rock Mechanics and Geotechnical Engineering, 2018. 10(4): p. 753-768.
  22. Lin, S. and J.C. Ashlock, Multimode Rayleigh wave profiling by hybrid surface and borehole methods. Geophysical Journal International, 2014. 197(2): p. 1184-1195.
  23. Olsson, D., Numerical simulations of energy absorbing boundaries for elastic wave propagation in thick concrete structures subjected to impact loading. 2012.
  24. Jokar, M.H., et al., Application of surface waves for detecting lateral variations: buried inclined plane. Near Surface Geophysics, 2019. 17(5): p. 501-531.
  25. Yilmaz, Ö., Seismic data analysis: Processing, inversion, and interpretation of seismic data. 2001: Society of exploration geophysicists.
  26. Chai, H.-Y., et al., Some theoretical and numerical observations on scattering of Rayleigh waves in media containing shallow rectangular cavities. Journal of Applied Geophysics, 2012. 83: p. 107-119.
  27. Atkinson, J., Non-linear soil stiffness in routine design. Géotechnique, 2000. 50(5): p. 487-508.
  28. Nasseri-Moghaddam, A., et al., Effects of underground cavities on Rayleigh waves—Field and numerical experiments. Soil dynamics and earthquake engineering, 2007. 27(4): p. 300-313.
  29. Abbasi Karafshani, S., A.A. Ardakani, and M. Yakhchalian, Comparison between the Effects of Near-and Far-Fault Ground Motions on the Seismic Response of a Soil-Pile-Structure System. Journal of Structural and Construction Engineering, 2016. 2(4): p. 117-130.
  30. Xia, J., et al., Feasibility of detecting near-surface feature with Rayleigh-wave diffraction. Journal of applied geophysics, 2007. 62(3): p. 244-253.
  31. Gholamy, A. and V. Kreinovich. Why Ricker wavelets are successful in processing seismic data: Towards a theoretical explanation. in 2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES). 2014. IEEE.
  32. Mirassi, S. and H. Rahnema, Effect of frequency content of seismic source load on Rayleigh and P waves in soil media with cavity. Journal of Structural and Construction Engineering, 2019.
  33. Mirassi, S., H. Rahnema, and A. Eshaghi, Evaluation of surface wave components for identification of subsurface cavities using 2D and 3D finite element modeling method. Journal Of Research on Applied Geophysics, 2020. 6(2): p. 219-233.
  34. Yoon, S. and G.J. Rix, Near-field effects on array-based surface wave methods with active sources. Journal of Geotechnical and Geoenvironmental Engineering, 2009. 135(3): p. 399-406.