معرفی مدل کوآک اصلاح ‌شده برای میراگرهای حاوی سیال مغناطیسی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی سازه، گروه مهندسی عمران، دانشکده فنی مهندسی، دانشگاه گیلان، رشت، ایران

2 استادیار، گروه مهندسی عمران، دانشکده فنی مهندسی، دانشگاه گیلان، رشت، ایران

چکیده

مطالعه چند وجهی حاضر، بر ارائه مدلی برای میراگرهای حاوی سیال مغناطیسی متمرکز شده است. از این رو نخست نگاهی اجمالی به مدل های موجود اینگونه میراگرها شده و سپس برای دستیابی به مدلی وارون پذیر، کارآمد و در عین حال ساده برای آنها، مدل کوآک انتخاب و تغییراتی در آن اعمال شده است. نهایتاً برای شناسایی پارامترهای تشکیل دهنده مدل، الگوریتم شناسائی جدیدی، بر اساس روش های فراابتکاری، ارائه گردیده است که از تحریکات متناوب در روند شناسایی خود بهره می گیرد. برای ارزیابی آنچه پیشنهاد شده از یک میراگر حاوی سیال مغناطیسی بزرگ- مقیاس‌ای که به صورت یک مدل جعبه سیاه در ساختمان معیار کف- جدای معرفی شده توسط کمیته کنترل سازه آمریکا معرفی شده، به عنوان آزمایشگاهی مجازی استفاده شده است. مسئله در محیط سیمولینک نرم افزار متلب اجرا شده است. رفتار مدل پیشنهادی تحت هفت زلزله نزدیک گسل بررسی و با مدل اصلی مقایسه شد. نتایج نشان می دهد که مدل پیشنهادی نسبت به مدل اصلی کوآک دارای دقت بیشتری است و به خوبی می تواند رفتار نیرو- تغییرمکان و نیرو- سرعت میراگر را پیش بینی کند. همچنین با توجه به اینکه مدل پیشنهادی دارای قابلیت وارون پذیری است، امکان استفاده در مسائل عملی و اجرایی کنترل سازه را داشته و از این نظر نیز نسبت به مدل کوآک برتری دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Introducing the modified Kwok model for magnetorheological dampers

نویسندگان [English]

  • Mehdi Rashidi Meybodi 1
  • Arash Bahar 2
1 Ph.D. Candidate in Structural Engineering, Department of Civil Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
2 Assistant Professor, Department of Civil Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
چکیده [English]

The present multidisciplinary study focuses on providing a model for magnetorheological dampers. First, it presented a brief look at the existing models of such dampers, and then to achieve an invertible, efficient, and at the same time simple model, the Kwok model has been selected and has changed appropriately. A new identification algorithm based on meta-heuristic methods has been proposed to identify the model, which has used periodic excitation. This algorithm has high detection capability with the minimum necessary tests. To evaluate the proposed model and identification method, a large-scale magnetorheological damper, which is placed as a black box model in the benchmark base-isolated building introduced by the US Structural Control Committee, has been used as a virtual laboratory. The whole process has been investigated in the Simulink environment of MATLAB. The performance of the proposed model was compared with the original one under seven near-fault earthquakes. The results show that the modified Kwok model is more accurate than the original one. It can predict force-displacement and force-velocity behaviors correctly. Also, since the proposed model is invertible, it is easily applicable in practical issues of structural control. It provides the possibility of managing control devices, so is superior to the Kwok model.

کلیدواژه‌ها [English]

  • Magnetorheological dampers
  • Identification
  • Meta-heuristic optimization
  • Base Isolated benchmark building
  • Inverse model
 [1] Bossis, G., Khuzir, P., Lacis, S., Volkova, O. (2003). “Yield behavior of magnetorheological suspensions”; Journal of Magnetism and Magnetic Materials, 258, 456-458.
[2] Kwok, N. M., Ha, Q. P., Nguyen, T. H., Li, J., Samali, B. (2006). “A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization”; Sensors Actuators A, 132, 441-451.
[3] Soltane, S., Montassar, S., Ben-Mekki, O., El-Fatmi, R. (2015). “A hysteretic Bingham model for MR dampers to control cable vibrations”; Journal of Mechanics and Structures, 10 (2), 195-206.
[4] Chang, C., Roschke, P. (1998). “Neural network modeling of a magnetorheological damper”; Journal of Intelligent Material Systems and Structures, 9, 755-764.
[5] Kim, H. S., Roschke, P. N., Lin, P. Y., Loh, C. H. (2006). “Neuro-fuzzy model of hybrid semi-active base isolation system with FPS bearings and an MR damper”; Engineering Structures, 28 (7), 947-958.
[6] Costa, A., Martins, J., Branco, F., Lilien, J. (1996). “Oscillations of bridge stay cables induced by periodic motions of deck and/or towers”; Journal of Engineering Mechanics, 122 (7), 613-622.
[7] Spaggiari, A., Dragoni, E. (2012). “Efficient dynamic modelling and characterization of a magnetorheological damper”; Meccanica, 47, 2041-2054.
[8] Carlson, J. D., Jolly, M. R. (2000) “MR fluid, foam and elastomer devices”; Mechatronics, 10, 555-569.
[9] Stanway, R., Sproston, J. L., Stevens, N. G. (1987). “Non-linear modelling of an electro-rheological vibration damper”; J. Electrostat, 20, 167-184
[10] Gamota, D. R., Filisko, F. E. (1991). “Dynamic mechanical studies of electrorheological materials: moderate frequencies”; J. Rheol, 35, 399-425.
[11] Wereley, N. M., Pang, L., Kamath, G. M. (1998). “Idealized hysteresis modeling of electrorheological and magnetorheological dampers”; J. Intell. Mater. Syst. Struct., 9, 642-649.
[12] Zhou, Q., Qu, W. L. (2002). “Two mechanic models for magnetorheological damper and corresponding test verification”; Earthq. Eng. Eng. Vib. (in Chinese), 22, 144-150.
[13] Occhiuzzi, A., Spizzuoco, M., Serino, G. (2003). “Experimental analysis of magnetorheological dampers for structural control”; Smart Mater. Struct., 12, 703-711.
[14] Zhang, Z., Huang, F. (2013). “A new magneticrheological damper nonlinear bingham hysteretic model and ANSYS implementation”; Applied Mechanics and Materials, 351-352, 1146-1151.
[15] Soltane, S., Montassar, S., Ben-Mekki, O., El-Fatmi, R. (2015). “A hysteretic Bingham model for MR dampers to control cable vibrations”; Journal of Mechanics of Materials and Structures, 10 (2), 195-206.
[16] Papanastasiou, T. C. (1987). “Flow of materials with yield”; Journal of Rheology, 31, 385–404.
[17] Bouc, R. (1971). “Mathematical model for hysteresis”; Acustica, 24, 16-25.
[18] Wen, Y. K. (1976). “Method for random vibration of hysteretic systems”; J. Eng. Mech. Div.-ASCE, 102, 249-263.
[19] Spencer, B. F. Jr., Dyke, S. J., Sain, M. K., Carlson, J. D. (1997). “Phenomenological model for magnetorheological dampers”; J. Eng. Mech. ASCE, 123, 230-238.
[20] Yi, F., Dyke, S. J., Caicedo, M. (1999). “Seismic Response Control Using Smart Dampers”; In: Proceedings of the American Control Conference. City: San Diego, California, 1022-1026.
[21] Yang, G., Spencer, B. F. Jr., Jung, H. J., Carlson, J. D. (2004). “Dynamic modeling of large-scale magnetorheological damper systems for civil engineering applications”; J. Eng. Mech. ASCE, 130, 1107-1114.
[22] Dominguez, A., Sedaghati, R., Stiharu, I. (2004). “Modelling the hysteresis phenomenon of magnetorheological dampers”; Smart Mater. Struct., 13, 1351-1361.
[23] Dominguez, A., Sedaghati, R., Stiharu, I. (2006). “A new dynamic hysteresis model for magnetorheological dampers”; Smart Mater. Struct., 15, 1179-1189.
[24] Ma, X., Rakheja, S., Su, C-Y. (2007). “Development and Relative Assessments of Models for Characterizing the Current Dependent Hysteresis Properties of Magnetorheological Fluid Dampers”; Journal of Intelligent Material Systems and Structures, 18, 487-502.
[25] Kwok, N. M., Ha, Q. P., Nguyen, M. T., Li, J., Samali, B. (2007). “Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA”; ISA Trans., 46, 167-179.
[26] Ismail, M., Ikhouane, F., Rodellar, J. (2009). “The Hysteresis Bouc-Wen Model, a Survey”; Arch. Comput. Methods Eng., 16, 161-188.
[27] Ikhouane, F., Rodellar, J. (2005). “On the Hysteretic Bouc–Wen Model. Part I: Forced Limit Cycle Characterization”; Nonlinear Dynamics, 42, 63-78.
[28] Ikhouane, F., Rodellar, J. (2005). “On the Hysteretic Bouc–Wen Model. Part II: Robust Parametric Identification”; Nonlinear Dynamics, 42, 79-95.
[29] Bahar, A., Pozo, F., Acho, L., Rodellar, J., Barbat, A. (2010). “Parameter identification of large-scale magnetorheological dampers in a benchmark building”; Computers and Structures, 88, 198-206.
[30] Dominguez, S., Stiharu, I., Sedaghati, R. (2013). “Practical hysteresis model for magnetorheological dampers”; Journal of Intelligent Material Systems and Structures, 0 (0), 1-13.
[31] Bai, X., Chen, P., Qian, L. (2015). “Principle and validation of modified hysteretic models for magnetorheological dampers”; Smart Materials and Structures, 24, 1-12.
[32] Wereley, N. M., Pang, L., Kamath, G. M. (1998). “Idealized hysteresis modeling of electrorheological and magnetorheological dampers”; J. Intell. Mater. Syst. Struct., 9, 642-649.
[33] Pang, L., Kamath, G. M., Wereley, N. M. (1998). “Analysis and testing of a linear stroke magnetorheological damper”; Proc. AIAA/ASME/AHS Adaptive Structures Forum, CP9803, 2841-2856.
[34] Snyder, R. A., Kamath, G. M. Wereley, N. M. (2001). “Characterization and analysis of magnetorheological damper behavior under sinusoidal loading”; AIAA J., 39, 1240-1253.
[35] Liu, H., Teng, J. (2004). “Modeling of Smart Dampers for Vibration Control”; In: Proceedings of the 2004 International Conference on Intelligent Mechatronics and Automation. City: Chengdu,Chin, 177-188.
[36] Seong, M. S., Choi, S. B., Kim, C. H. (2013). “Damping force control of frictionless MR damper associated with hysteresis modeling”; Journal of Physics: Conference Series (13th Int. Conf. on Electrorheological Fluids and Magnetorheological Suspensions), 412, 1-7.
[37] Ang, W. L., Li, W. H., Du, H. (2004). “Experimental and modelling approaches of a MR damper performance under harmonic loading”; J. Inst. Eng., 44, 1–14.
[38] Sims, N. D., Holmes, N. J., Stanway, R. (2004). “A unified modelling and model updating procedure for electrorheological and magnetorheological dampers”; Smart Mater. Struct., 13, 100-121.
[39] Weiss, K. D., Carlson, J. D., Nixon, D. A. (1994). “Viscoelastic properties of magneto- and electro-rheological fluids”; J Intell Mater Syst Struct, 5, 772-775.
[40] Jolly, M. R., Carlson, J. D., Munoz, B. C. (1996). “A model of the behaviour of magnetorheological materials”; Smart Mater Struct, 5, 607-614.
[41] Kamath, G. M., Wereley, N. M. (1997). “Nonlinear viscoelastic–plastic mechanisms-based model of an electrorheological damper”; J. Guid. Control Dyn., 20, 1125-1132.
[42] Kamath, G. M., Wereley, N. M. (1997). “A nonlinear viscoelastic-plastic model for electrorheological fluids”; Smart Mater. Struct., 6, 351-359.
[43] Wereley, N. M., Kamath, G. M., Madhavan, V. (1999). “Hysteresis modeling of semi-active magnetorheological helicopter dampers”; J. Intell. Mater. Syst. Struct., 10, 624-633.
[44] Kamath, G. M., Wereley, N. M., Jolly, M. R. (1999). “Characterization of magnetorheological helicopter lag dampers”; J. Am. Helicopter Soc., 44, 234-248.
[45] Li, W. H., Yao, G. Z., Chen, G., Yeo, S. H., Yap, F. F. (2000). “Testing and steady state modeling of a linear MR damper under sinusoidal loading” Smart Mater. Struct., 9, 95-102.
[46] Li, Z., Ni, Y., Dai, H., Ye, S. (2013). “Viscoelastic plastic continuous physical model of a magnetorheological damper applied in the high speed train”; Sci. China Tech Sci, 56, 2433-2446.
[47] Weng, J. S., Hu, H. Y., Zhang, M. K. (20000. “Experimental modeling of magnetorheological damper”; J. Vib. Eng. (in Chinese), 13, 616-620.
[48] Wang, D. H., Liao, W. H. (2011). “Magnetorheological fluid dampers: a review of parametric modelling”; Smart Mater. Struct., 20, 1-34.
[49] Guo, D., Hu, H. (2005). “Nonlinear Stiffness of a Magneto-Rheological Damper”; Nonlinear Dynamics, 40, 241-249.
[50] Cesmeci, S., Engin, T. (2010). “Modeling and testing of a field-controllable magnetorheological fluid damper”; International Journal of Mechanical Sciences, 52, 1036-1046.
[51] Metered, H., Mostafa, S., El-Demerdash, S., Hammad, N., El-Nashar, M. (2013). “Testing, Modelling and Analysis of a Linear Magnetorheological Fluid Damper under Sinusoidal Conditions”; SAE Technical Paper, 2013-01-0996, Available at: URL [https://doi.org/10.4271/2013-01-0996].
[52] Balamurugan, L., Jancirani, J., Eltantawie, M. A. (2014). “Generalized Magnetorheological (MR) Damper Model and its Application in Semi-Active Control of Vehicle Suspension System”; International Journal of Automotive Technology, 15 (3), 419-442.
[53] Bass, B. J., Christenson, R. E. (2007). “System Identification of a 200 kN Magneto-Rheological Fluid Damper for Structural Control in Large-Scale Smart Structures”; In: Proceedings of the 2007 American Control Conference Marriott Marquis Hotel at Times Square. City: New York City, USA, 2690-2695.
[54] Yang, M., Chen, Z., Hua, X. (2011). “An experimental study on using MR damper to mitigate longitudinal seismic response of a suspension bridge”; Soil Dynamics and Earthquake Engineering, 31, 1171-1181.
[55] Pan, W., Yan, Z., Lou, J., Zhu, S. (2018). “Research on MRD Parametric Model Based on Magic Formula”; Hindawi, Shock and Vibration Volume 2018, Article ID 1871846, 1-10. Available at: URL [https://doi.org/10.1155/2018/1871846].
[56] Zhou, Q., Nielsen, S. R. K., Qu, W. L. (2006). “Semi-active control of three-dimensional vibrations of an inclined sag cable with magnetorheological dampers”; J. Sound Vib., 296, 1-22.
[57] Zhou, Q., Qu, W. L. (2002). “Two mechanic models for magnetorheological damper and corresponding test verification”; Earthq. Eng. Eng. Vib. (in Chinese), 22, 144-150.
[58] Ikhouane, F., Dyke, S. J. (2007). “Modeling and identification of a shear mode magnetorheological damper”; Smart Mater. Struct., 16, 605-616.
[59] Garcia-Banos, I., Ikhouane, F., Aguirre-Carvajal, N. (2017). “An asymmetric-friction based model for magnetorheological dampers”; IFAC (International Federation of Automatic Control) Papers Online, 50-1, 14076-14081. Available at: URL [10.1016/j.ifacol.2017.08.1844]. 
[60] Jimenez, R., Alvarez-Icaza, L. (2005). “LuGre friction model for a magnetorheological damper”; Struct. Control Health Monit., 12, 91-116.
[61] Ma, X. Q., Rakheja, S., Su, C. Y. (2007). “Development and relative assessments of models for characterizing the current dependent hysteresis properties of magnetorheological fluid dampers”; J. Intell. Mater. Syst. Struct., 18, 487-502.
[62] Narasimhan, S., Nagarajaiah, S., Johnson, E. A., Gavin, H. P. (2006). “Smart base-isolated benchmark building. Part I: problem definition” Structural Control and Health Monitoring, 13 (2-3), 573-588.
[63] Kennedy, J., Eberhart, R. (1995). “Particle swarm optimization, in Neural Networks”; In: Proceedings, IEEE international conference on 1995, 1942-1948.