تخریب پیشرونده در سازه‌های قاب خمشی فولادی: مطالعه چندپارامتری

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشگاه علم و صنعت ایران، تهران، ایران

2 دانشجوی دکتری، دانشگاه یزد، یزد، ایران

3 استادیار، دانشگاه علم و صنعت ایران، تهران، ایران.

4 استاد، دانشگاه علم و صنعت ایران، تهران، ایران.

چکیده

عموماً تخریب پیشرونده در اثر حوادث پیش‌بینی‌نشده تصادفی، با تخریب یکی از اعضای اصلی ساختمان مانند ستون یا دیوار باربر، شروع می‌شود و با ایجاد بار افزون در اعضا و اتصالات متصل به عضو تخریب‌شده باعث گسترش تخریب در کل سازه می‌شود. در این تحقیق، سناریوهای مختلف حذف تک‌ستون (5 مورد) و حذف جفت‌ستون (6 مورد) در سازه‌های 4، 8 و 12 طبقه دارای قاب خمشی فولادی در نرم‌افزار OpenSeesبررسی شد. مدل‌سازی‌ها به‌صورت ماکرو و سه‌بعدی انجام‌شده است. اثرات غیرخطی مصالح و هندسه در مدل‌ها در نظر گرفته‌شده است. هم‌چنین اثرات قائم سقف کامپوزیت به‌صورت فنرهای دوخطی در محل گره‌های اتصال تیر به ستون در نظر گرفته‌شده است. نتایج نشان داد، سازه‌ها در مقابل تخریب پیشرونده آسیب‌پذیر هستند. با کاهش تعداد طبقات سازه، آسیب ایجادشده در سازه بیشتر ‌است، به‌طوری‌که جابجایی‌های ایجادشده در حذف تک‌ستون گوشه (سناریوی 1) به ترتیب برای سازه‌های 4، 8 و 12 طبقه برابر با 70 و 56 و 51 میلی‌متر است. حذف جفت‌ستون نسبت به حذف-تک‌ستون به‌شدت آسیب‌های ایجادشده در سازه را افزایش می‌دهد. به‌طوری‌که در سازه 8 طبقه جابجایی‌های حداکثر حذف جفت‌ستون گوشه (سناریوی 11) نسبت به حذف تک‌ستون گوشه (سناریوی 1) برابر با 7/3 است. هم‌چنین لحاظ اثر سقف کامپوزیت در سناریوهای حذف تک‌ستون و جفت‌ستون، جابجایی‌های قائم را به ترتیب 40 و 60 درصد می‌تواند کاهش دهد. در پایان، جهت تیرچه‌ها در سقف کامپوزیت می‌تواند در کاهش جابجایی‌های قائم موثر باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Progressive collapse in steel moment frame structures: multi-parameter study

نویسندگان [English]

  • Esmaeil Mohammadi Dehcheshmeh 1
  • Mohammad Kamalizad 2
  • Vahid Broujerdian 3
  • Gholamreza Ghodrati Amiri 4
1 Ph.D. Candidate, School Civil Eng., Iran University of science and Technology, Tehran, Iran
2 Ph.D. Candidate, School Civil Eng., Yazd University, Yazd, Iran
3 Assistant Professor, School Civil Eng., Iran University of science and Technology, Tehran, Iran
4 Professor, School Civil Eng., Iran University of science and Technology, Tehran, Iran
چکیده [English]

Progressive collapse due to unexpected accidents usually begins with the collapse of one of the main members of the structures, such as a column or a load-bearing wall. The collapse expands the entire structure by creating additional loads on the members and connections attached to the collapsed member. In this research, various scenarios of single-column-removal (5 cases) and double -column-removal (6 cases) in 4, 8 and 12-story structures with steel moment frames were investigated in OpenSees software. The simulation was done in a 3D macro-modeling manner. The nonlinear behavior of materials and geometry were taken into account. Moreover, the vertical effects of the composite floors were considered as double-line springs at the beam to column joints. The results showed that the structures are vulnerable to progressive collapse. According to the results, as the number of stories of the structure decreases the damage caused to the structure is increases. In this regard, the displacements occurred in the corner single-column-removal (Scenario 1) were 70, 56 and 51 mm for 4, 8 and 12 story structures, respectively. The double-column-removal compared to single-column removal greatly increases the structural damage. So that in an 8-story structure, the ratio of maximum displacement of the corner double-column-removal (Scenario 11) compared to the corner single-column-removal (Scenario 1) is equal to 3.7. Furthermore, the impact of the composite floor in the single- and double-column-removal scenarios can reduce the vertical displacements by 40% and 60%, respectively. Finally, the joist beams direction in the composite floor can be effective in reducing the vertical displacements.

کلیدواژه‌ها [English]

  • Progressive collapse
  • Multi-column-removal
  • Steel moment frame
  • Nonlinear dynamic analysis
  • OpenSees software
[1]        U. Starossek, “Typology of progressive collapse,” Eng. Struct., vol. 29, no. 9, pp. 2302–2307, 2007.
[2]        H. Shakib, M. Zakersalehi, V. Jahangiri, and R. Zamanian, “Evaluation of Plasco Building fire-induced progressive collapse,” in Structures, 2020, vol. 28, pp. 205–224.
[3]        GSA, “Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects,” Washington, DC, 2016.
[4]        ASCE/SEI 7-16, Minimum Design Loads and Buildings and Other Structures. 2016.
[5]        B. R. Ellingwood, R. Smilowitz, D. O. Dusenberry, D. Duthinh, H. S. Lew, and N. J. Carino, “Best practices for reducing the potential for progressive collapse in buildings,” 2007.
[6]        UFC, Design of Buildings to Resist Progressive Collapse. Department of Defence, 2009.
[7]        J. Kim and T. Kim, “Assessment of progressive collapse-resisting capacity of steel moment frames,” J. Constr. Steel Res., vol. 65, no. 1, pp. 169–179, 2009.
[8]        J. Kim and D. An, “Evaluation of progressive collapse potential of steel moment frames considering catenary action,” Struct. Des. tall Spec. Build., vol. 18, no. 4, pp. 455–465, 2009.
[9]        T. Li, Z. Shang, Y. Ji, and C. Liu, “Research on Catenary Action of Frame Structure in Progressive Collapse with Fiber Model,” in 3rd International Conference on Mechatronics, Robotics and Automation, 2015.
[10]      F. H. Rezvani, A. M. Yousefi, and H. R. Ronagh, “Effect of span length on progressive collapse behaviour of steel moment resisting frames,” in Structures, 2015, vol. 3, pp. 81–89.
[11]      K. Mehdizadeh and A. Karamodin, “Evaluation the possibility of the occurrence of progressive collapse in steel moment frames (ordinary, intermediate and special) due to sudden column removal,” J. Struct. Constr. Eng., vol. 5, no. 3, pp. 85–105, 2018, doi: 10.22065/jsce.2017.89028.1231.
[12]      F. Xie, B. Gu, and H. Qian, “Experimental study on the dynamic behavior of steel frames during progressive collapse,” J. Constr. Steel Res., vol. 177, p. 106459, 2021.
[13]      K. Qian, B. Li, and Z. Zhang, “Influence of multicolumn removal on the behavior of RC floors,” J. Struct. Eng., vol. 142, no. 5, p. 4016006, 2016.
[14]      M. Nassir, J. Yang, S. Nyunn, I. Azim, and F. L. Wang, “Progressive Collapse Analysis of multi-story building under the scenario of multi-column removal,” in E3S Web of Conferences, 2019, vol. 136, p. 4050.
[15]      F. Parisi and M. Scalvenzi, “Progressive collapse assessment of gravity-load designed European RC buildings under multi-column loss scenarios,” Eng. Struct., vol. 209, p. 110001, 2020.
[16]      J.-Z. Zhang, B.-H. Jiang, R. Feng, and R. Chen, “Robustness of steel moment frames in multi-column-removal scenarios,” J. Constr. Steel Res., vol. 175, p. 106325, 2020.
[17]      R. Jalali Larijani, H. Dashti Nasserabadi, and I. Aghayan, “Progressive collapse investigation of buildings with concentric and eccentric braced frames using nonlinear procedure,” J. Struct. Constr. Eng., 2020, doi: 10.22065/jsce.2020.203435.1964.
[18]      H. R. Ashrafi and S. A. Hassanzadeh, “Introducing an optimal method for macro modeling of nonlinear dynamic analysis in progressive collapse (A case study : OpenSees program),” J. Struct. Constr. Eng., vol. 7, no. 1, pp. 5–25, 2020, doi: 10.22065/jsce.2018.113761.1425.
[19]      Q. N. Fu, K. H. Tan, X. H. Zhou, and B. Yang, “Three-dimensional composite floor systems under column-removal scenarios,” J. Struct. Eng., vol. 144, no. 10, p. 4018196, 2018.
[20]      Q. Fu and K.-H. Tan, “Numerical study on steel-concrete composite floor systems under corner column removal scenario,” in Structures, 2019, vol. 21, pp. 33–44.
[21]      Q. N. Fu and K. H. Tan, “Parametric effects on composite floor systems under column removal scenario,” Eng. Struct., vol. 187, pp. 161–176, 2019.
[22]      V. Broujerdian, E. Mohammadi Dehcheshmeh, and G. Ghodrati Amiri, “Effect of composite slab on the progressive collapse control of steel moment frame structures,” J. Civ. Environ. Eng., 2020, doi: 10.22034/jcee.2020.21013.1514.
[23]      M. Saghaie Sahebalzaman, M. R. Sheidaii, and A. Salmasi, “Effects of plastic hinges modelling of fully restrained connections in the progressive collapse resistance of steel moment frames,” J. Struct. Constr. Eng., vol. 8, no. 1, pp. 327–342, 2021, doi: 10.22065/jsce.2019.184813.1855.
[24]      A. Habibullah, “ETABS users manual,” Comput. Struct. Inc., Berkeley, California, USA, 2016.
[25]      S. Mazzoni, F. McKenna, M. H. Scott, and G. L. Fenves, “OpenSees command language manual,” Pacific Earthq. Eng. Res. Cent., vol. 264, 2006.
[26]      U. Starossek, Progressive collapse of structures, vol. 153. thomas telford London, 2018.
[27]      K. Khandelwal and S. El-Tawil, “Collapse behavior of steel special moment resisting frame connections,” J. Struct. Eng., vol. 133, no. 5, pp. 646–655, 2007.
[28]      A. I. of S. Construction, “Specification for Structural Steel Buildings,” pp. 1–612, 2010.
[29]      INBC Part 10th, “Iranian National Building Code, Part 10th, Design and Construction of steel buildings.” 2013.
[30]      INBC Part 6th, “Iranian National Building Code, Part 6th , Design Loads for Buildings.” 2013.
[31]      ASCE/SEI 7, “Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-16).,” 2016.
[32]      IBC Standard, “Iranian Building Codes And Standards, Iranian Code Of Practice For Seismic Resistant Design Of Buildings, Standard No.2800, 4th Edition.” 2013.
[33]      A. Tsitos, “Experimental investigation of the progressive collapse of steel frames.” PhD dissertation, Department of Civil, Structural & Environmental …, 2009.
[34]      NO. 360, Instruction for Seismic Rehabilitation of Existing Buildings,Office of Deputy for Strategic Supervision Department of Technical Affairs, NO. 360 ,First Revision. 2014.
[35]      Fema 356, “Fema 356 : Prestandard and Commentary for the Seismic Rehabilitation of Buildings in Rehabilitation Requirements,” American Society of Civil Engineers Washington, DC, USA, 2000.
[36]      E. Kalilzadeh Vahidi and  pouria chavoshani, “The effect of increasing span length and storey height on the progressive failure of reinforced concrete frames with different percentages of openings in the masonry infilled wall,” J. Struct. Constr. Eng., 2020, doi: 10.22065/jsce.2020.210392.2010.