برآورد وزن میلگرد مصرفی در ساختمان‌های مسکونی قاب خمشی متوسط بتنی، با استفاده از شبکه عصبی مصنوعی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار دانشکده فنی، دانشگاه گیلان

2 دانشجوی دکتری مهندسی سازه، دانشکده فنی دانشگاه گیلان، رشت، ایران

3 دانشجوی دکتری مهندسی سازه، پردیس دانشگاهی دانشگاه گیلان، رشت، ایران

10.22065/jsce.2021.279806.2425

چکیده

برآورد هزینه‌های احداث ساختمان به‌ویژه در مراحل اولیه مطالعاتی، از موضوعات موردعلاقه و حائز اهمیت برای کارفرمایان و سرمایه‌گذاران هست. تورم بالای حاکم بر اقتصاد کشور در سال‌های اخیر و نوسان شدید قیمت مصالح ساختمانی، اهمیت برآورد هزینه‌های احداث ساختمان حتی در پروژه‌های کوچک شهری را دوچندان کرده است. اما تا زمانی که طراحی ساختمان به اتمام نرسیده و نقشه‌های نهایی با تمام جزئیات تهیه نشده باشند امکان متره پروژه و برآورد هزینه‌های احداث با دقت قابل‌قبول میسر نیست. از طرفی روش‌های تقریبی ارائه‌شده جهت برآوردهای اولیه، با اختلافات زیادی نسبت به واقعیت همراه هستند که با فلسفه وجودی برآورد اقتصادی پروژه سازگاری ندارد. لذا در این پژوهش با استفاده از محاسبات مبتنی بر هوش مصنوعی و قابلیت یادگیری از داده‌های آموزشی شبکه عصبی مصنوعی وزن میلگرد مصرفی در ساختمان‌های مسکونی قاب خمشی بتنی، بدون طراحی کامل و تهیه نقشه‌های اجرایی محاسبه‌شده و نتایج با مقادیر واقعی مقایسه می‌شوند. مدل شبکه عصبی مصنوعی پیشنهادی پژوهش از نوع از نوع پرسپترون چندلایه پیش‌خور با الگوریتم یادگیری پس انتشار هست و بر اساس پارامترهای تعداد دهانه در راستای طولی و عرضی، ارتفاع طبقه، تعداد طبقات، تعداد ستون در هر طبقه، مساحت طبقه و برش پایه لرزه‌ای وزن میلگرد مصرفی در ساختمان‌های موردمطالعه برآورد شده است. نتایج پژوهش حاکی از این است که مدل شبکه عصبی پیشنهادی می‌تواند وزن میلگرد مصرفی را در ساختمان‌های منظم با دقت 95 درصد و در ساختمان‌های نامنظم با دقت 80 درصد برآورد نماید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of rebar weight in residential buildings of concrete intermediate moment frame using Artificial Neural Network

نویسندگان [English]

  • Meysam Effati 1
  • Hamed Ebrahimi 2
  • Mojtaba Faraji 3
1 Faculty of engineering, Guilan University, Rasht, Iran
2 PHD Student in Structural Engineering, Faculty of engineering, Guilan University, Rasht, Iran
3 PHD Student in Structural Engineering, Faculty of engineering, Guilan University, Rasht, Iran
چکیده [English]

Estimating the cost of building construction, especially in the early stages of studies, is a topic of interest and importance for employers and investors. The high inflation of the country's economy in recent years and the sharp fluctuations in the price of construction materials have doubled the importance of estimating the cost of building construction, even in small urban projects. However, until the design of the building is completed and the final plans are not prepared in full detail, it is not possible to measure the project and estimate the construction costs with acceptable accuracy. On the other hand, the proposed approximate methods for initial estimates are associated with many differences from reality that are not consistent with the existential philosophy of project economic estimation. Therefore, in this study, using training capability of Artificial Intelligence and Artificial Neural Network algorithms, the weight of rebar used in concrete buildings of concrete moment frame, without complete design and preparation of executive plans is calculated and the results are compared with real values. The proposed artificial neural network model is a multilayer feeder type feeder with post-diffusion learning algorithm and is based on the parameters of number of openings in longitudinal and transverse direction, floor height, number of floors, number of columns per floor, floor area and seismic base shear. The weight of rebar used in the studied buildings has been estimated. The results indicate that the proposed neural network model can estimate the weight of rebar used in regular buildings with 95% accuracy and in irregular buildings with 80% accuracy.

کلیدواژه‌ها [English]

  • "؛ Soft computing"؛ Artificial Neural Network"؛ Structural frame weight"؛ concrete flexural frame"؛
  • "؛ structural weight Estimation"
  • تاریخ دریافت: 27 فروردین 1400
  • تاریخ بازنگری: 19 مهر 1400
  • تاریخ پذیرش: 10 آبان 1400
  • تاریخ اولین انتشار: 10 آبان 1400