ارزیابی شاخص قابلیت اطمینان قاب خمشی فولادی کوتاه‌مرتبه برمبنای سطوح عملکرد

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده فنی و مهندسی، گروه مهندسی عمران، دانشگاه قم، قم، ایران

2 دانشیار، دانشکده فنی و مهندسی، دانشگاه قم، قم، ایران

چکیده

در طراحی یک سازه، باید نسبت به پاسخگو بودن طرح دربرابر ملزومات طراحی، با توجه به ماهیت احتمالاتی برخی پارامترها، اطمینان مناسبی حاصل کرد. برای بررسی میزان ایمنی طرح، می‌توان از نظریه قابلیت اطمینان استفاده کرد. در این مطالعه، به ارزیابی قابلیت اطمینان قاب خمشی فولادی کوتاه‌مرتبه طراحی شده براساس عملکرد پرداخته شد. برای این منظور، براساس روش شبیه‌سازی مونت‌کارلو و تحلیل استاتیکی غیرخطی، یک فرآیند مرحله‌ای به صورت یک فلوچارت ارائه گردید تا با استفاده از آن بتوان شاخص قابلیت اطمینان قاب خمشی را برای توابع حالت حدی محدودیت دوران پلاستیک مفاصل پلاستیک و میزان جابجایی نسبی میان‌طبقه در هر سطح عملکرد محاسبه نمود. پارامترهای تصادفی درنظر گرفته شده در این مطالعه عبارتند از: سطح مقطع، ممان اینرسی و اساس مقطع پلاستیک اعضا، مدول الاستیسیته و تنش تسلیم فولاد و بارگذاری ثقلی. در انتها، براساس فلوچارت ارائه شده، قابلیت اطمینان یک قاب خمشی فولادی سه طبقه که براساس روش مبتنی‌بر عملکرد، طراحی بهینه شده است، ارزیابی شد. نتایج بدست آمده نشان می‌دهند که در سطح عملکرد قابلیت استفاده بی‌وقفه طرح بهینه انتخابی، احتمال کمتر بودن مقادیر دوران پلاستیک تعدادی از مفاصل از مقادیر معیارهای پذیرش آن‌ها در این سطح مطلوب نیست؛ در حالیکه در سایر مفاصل پلاستیک و سطوح عملکرد دیگر، شاخص قابلیت اطمینان مناسبی برای قید احتمالاتی محدودیت دوران پلاستیک بدست آمد. همچنین، براساس نتایج بدست آمده، احتمال فراتر رفتن میزان جابجایی نسبی میان‌طبقه طبقات از حدود درنظرگرفته شده در هر سطح عملکرد، بسیار اندک است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of low-rise steel moment-resisting frame reliability index based on performance levels

نویسندگان [English]

  • Mohammad Ali Fathali 1
  • Seyed Rohollah Hosseini Vaez 2
1 Department of Civil Engineering, Faculty of Engineering, University of Qom, Qom, Iran
2 Associate Professor, Department of Civil Engineering, Faculty of Engineering, University of Qom, Qom, Iran
چکیده [English]

In designing a structure, due to the uncertainty in some parameters, it is necessary to ensure that the design is responsive to the design requirements. For this purpose, the theory of reliability is used. In this study, the reliability of the low-rise steel moment-resisting frame was evaluated based on performance levels. For this purpose, based on the Monte Carlo simulation method, a step-by-step process was presented to use it to calculate the steel moment-resisting frame reliability index for probabilistic constraints of plastic hinges limitation and inter-story drift ratio limitation at each performance level. Also, cross-sectional area, moment of inertia and plastic section modulus of members, modulus of elasticity and yield stress of steel, and gravity loading are considered as random parameters in this study. Finally, using the presented process method, the reliability of a three-story steel moment-resisting frame, which is optimized based on the performance-based design method, was evaluated. The results show that in some plastic hinges at the performance level of immediate occupancy, the probability of plastic rotation less than the acceptance criteria of this level is not desirable, while in other plastic hinges and performance levels, a suitable reliability index was obtained for the probabilistic constraint of plastic rotation constraint. Also, based on the results, it is very unlikely that the inter-story drift ratio of stories will exceed the limits considered at each level of performance.

کلیدواژه‌ها [English]

  • Reliability assessment
  • Monte-Carlo simulation method
  • Performance-based design
  • Probability of failure
  • Low-rise Steel moment-resisting frame
[1] Pouraminian, M., Pourbakhshian, S.and Moahammad Hosseini, M. (2019). Reliability analysis of Pole Kheshti historical arch bridge under service loads using SFEM. Journal of Building Pathology and Rehabilitation, 4 (1), 21.
[2] Nguyen, H.D., Shin, M.and Torbol, M. (2020). Reliability assessment of a planar steel frame subjected to earthquakes in case of an implicit limit-state function. Journal of Building Engineering, 32, 101782.
[3] Rahgozar, N., Pouraminian, M.and Rahgozar, N. (2021). Reliability-based seismic assessment of controlled rocking steel cores. Journal of Building Engineering, 44, 102623.
[4] Cornell, C.A. (1969). A Probability-Based Structural Code. ACI Journal Proceedings, 66 (12), 974-85.
[5] Choi, S.-K., Grandhi, R.V.and Canfield, R.A. (2007). Reliability-based structural design. London: Springer.
[6] Hasofer, A.M.and Lind, N.C. (1974). Exact and invariant second-moment code format. Journal of the Engineering Mechanics division, 100 (1), 111-21.
[7] Rackwitz, R.and Flessler, B. (1978). Structural reliability under combined random load sequences. Computers & Structures, 9 (5), 489-94.
[8] Tichý, M. (1994). First-order third-moment reliability method. Structural Safety, 16 (3), 189-200.
[9] Wang, L.and Grandhi, R.V. (1996). Safety index calculation using intervening variables for structural reliability analysis. Computers & Structures, 59 (6), 1139-48.
[10] Santosh, T.V., Saraf, R.K., Ghosh, A.K.and Kushwaha, H.S. (2006). Optimum step length selection rule in modified HL–RF method for structural reliability. International Journal of Pressure Vessels and Piping, 83 (10), 742-8.
[11] Yang, D. (2010). Chaos control for numerical instability of first order reliability method. Communications in Nonlinear Science and Numerical Simulation, 15 (10), 3131-41.
[12] Gong, J.-X.and Yi, P. (2011). A robust iterative algorithm for structural reliability analysis. Structural and Multidisciplinary Optimization, 43 (4), 519-27.
[13] Fiessler, B., Rackwitz, R.and Neumann, H.-J. (1979). Quadratic limit states in structural reliability. Journal of the Engineering Mechanics Division, 105 (4), 661-76.
[14] Breitung, K. (1984). Asymptotic Approximations for Multinormal Integrals. Journal of Engineering Mechanics, 110 (3), 357-66.
[15] Hohenbichler, M.and Rackwitz, R. (1988). Improvement of Second-Order Reliability Estimates by Importance Sampling. Journal of Engineering Mechanics, 114 (12), 2195-9.
[16] Tvedt, L. (1990). Distribution of Quadratic Forms in Normal Space-Application to Structural Reliability. Journal of Engineering Mechanics, 116 (6), 1183-97.
[17] Kiureghian, A.D.and Stefano, M.D. (1991). Efficient Algorithm for Second-Order Reliability Analysis. Journal of Engineering Mechanics, 117 (12), 2904-23.
[18] Cai, G.Q.and Elishakoff, I. (1994). Refined second-order reliability analysis. Structural Safety, 14 (4), 267-76.
[19] Köylüoǧlu, H.U.and Nielsen, S.R.K. (1994). New approximations for SORM integrals. Structural Safety, 13 (4), 235-46.
[20] Liu, P.-L.and Der Kiureghian, A. (1991). Optimization algorithms for structural reliability. Structural Safety, 9 (3), 161-77.
[21] Elegbede, C. (2005). Structural reliability assessment based on particles swarm optimization. Structural Safety, 27 (2), 171-86.
[22] Hoseini Vaez, S.R., Mehanpour, H.and Fathali, M.A. (2020). Reliability assessment of truss structures with natural frequency constraints using metaheuristic algorithms. Journal of Building Engineering, 28, 101065.
[23] Zhong, C., Wang, M., Dang, C.and Ke, W. (2020). Structural reliability assessment by salp swarm algorithm–based FORM. Quality and Reliability Engineering International, 36 (4), 1224-44.
[24] Hosseini, P., Hoseini Vaez, H.R., Fathali, M.A.and Mehanpour, H. (2020). Reliability Assessment of Transmission Line Towers Using Metaheuristic Algorithms. International Journal of Optimization in Civil Engineering, 10 (3), 531-51.
[25] Kaveh, A., Hoseini Vaez, S.R., Hosseini, P.and Fathali, M.A. (2021). Heuristic Operator for Reliability Assessment of Frame Structures. Periodica Polytechnica Civil Engineering, 65 (3), 702-16.
[26] Metropolis, N.and Ulam, S. (1949). The monte carlo method. Journal of the American statistical association, 44 (247), 335-41.
[27] Olsson, A., Sandberg, G.and Dahlblom, O. (2003). On Latin hypercube sampling for structural reliability analysis. Structural Safety, 25 (1), 47-68.
[28] Ibrahim, Y. (1991). Observations on applications of importance sampling in structural reliability analysis. Structural Safety, 9 (4), 269-81.
[29] Au, S.K., Ching, J.and Beck, J.L. (2007). Application of subset simulation methods to reliability benchmark problems. Structural Safety, 29 (3), 183-93.
[30] Pradlwarter, H.J., Schuëller, G.I., Koutsourelakis, P.S.and Charmpis, D.C. (2007). Application of line sampling simulation method to reliability benchmark problems. Structural Safety, 29 (3), 208-21.
[31] Kang, S.-C., Koh, H.-M.and Choo, J.F. (2010). An efficient response surface method using moving least squares approximation for structural reliability analysis. Probabilistic Engineering Mechanics, 25 (4), 365-71.
[32] Rashki, M., Miri, M.and Azhdary Moghaddam, M. (2012). A new efficient simulation method to approximate the probability of failure and most probable point. Structural Safety, 39, 22-9.
[33] Bucher, C. (2009). Asymptotic sampling for high-dimensional reliability analysis. Probabilistic Engineering Mechanics, 24 (4), 504-10.
[34] Hoseini Vaez, S.R., Hosseini, P., Fathali, M.A., Asaad Samani, A.and Kaveh, A. (2020). Size and Shape Reliability-Based Optimization of Dome Trusses. International Journal of Optimization in Civil Engineering, 10 (4), 701-14.
[35] FEMA-356 (2000). Prestandard and commentary for the seismic rehabilitation of buildings. Washington, DC: Federal Emergency Management Agency.
[36] Gong, Y. (2003). Performance-based design of steel building frameworks under seismic loading. Ph.D. Thesis. Waterloo, Ontario, Canada: University of Waterloo, Civil Engineering.
[37] Karimi, F.and Hoseini Vaez, S.R. (2019). Two-stage optimal seismic design of steel moment frames using the LRFD-PBD method. Journal of Constructional Steel Research, 155, 77-89.
[38] Mazzoni, S., McKenna, F., Scott, M.H.and Fenves, G.L. (2016). Open system for earthquake engineering simulation (OpenSees): version 2.5.0. University of California, Berkeley, California, USA: Pacific Earthquake Engineering Research (PEER) Center.
[39] Hoseini Vaez, S.R., Fathali, M.A.and Asaad Samani, A. (2021). Optimum Performance-based Design of Steel Frames. Qom: University of Qom Press.
[40] Kaveh, A., Azar, B.F., Hadidi, A., Sorochi, F.R.and Talatahari, S. (2010). Performance-based seismic design of steel frames using ant colony optimization. Journal of Constructional Steel Research, 66 (4), 566-74.
[41] Kaveh, A.and Nasrollahi, A. (2014). Performance-based seismic design of steel frames utilizing charged system search optimization. Applied Soft Computing, 22, 213-21.