بررسی ظرفیت باربری سیستم پیشنهادی مهاربندی جانبی دایره‌ای شکل با اتصال نشسته اصطکاکی با ستون

نوع مقاله : علمی - پژوهشی

نویسنده

گروه مهندسی عمران، واحد زنجان، دانشگاه آزاد اسلامی، زنجان، ایران

چکیده

به منظور کاهش خسارات و تلفات جانی ناشی از زلزله‌ها تلاش گسترده ای توسط دانشمندان برای معرفی سیستم‌های سازه‌ای مقاوم در برابر زلزله انجام شده است. یکی از سیستم‌های مقاوم باربر جانبی جدید معرفی شده سیستم مهاربندی شده دایره‌ای شکل فولادی با نام OGrid است. مطالعات گذشته قابلیت استهلاک انرژی بالا و شکل پذیری مناسب این سیستم‌های باربر جانبی را نشان داده‌اند. این سیستم قابلیت بالای تحمل تغییرشکل‌های غیرخطی پس از تشکیل اولین مفصل پلاستیک تا فروریزش کامل را داراست. در مطالعه حاضر سعی شده است که نوع جدیدی از این مهاربندی با انواع اتصالات مهاربند به تیر و ستون معرفی و عملکرد آن بررسی شود. برای این امر از مهاربند دایره‌ای شکل معرفی شده استفاده شده و اتصال‌های مختلف قاب به مهاربند دایره‌ای شکل، که شامل اتصال مهاربند به تیر و اتصال مهاربند به ستون‌ها و همچنین مقایسه حضور اصطکاک و عدم حضور اصطکاک بین مهاربند و قاب، مدل سازی شده و نتایج بررسی شده است. بر اساس نتایج حاصله مشخص می‌شود که با آزادسازی اتصال مهاربند دایره‌ای با مقطع I شکل به ستون و ایجاد اصطکاک فی مابین آن دو با ضریب 0.5، ظرفیت باربری نسبت به حالت اتصال گیردار تا 22 درصد افزایش می‌یابد. در این حالت قبل از تسلیم، نرم شوندگی در مدل مشاهده شده ولی پس از تسلیم نسبت به مدل دارای اتصال کامل، استهلاک انرژی بهتری به دلیل تغییر شکل‌های انجام شده در مهاربند دایره‌ای رخ می‌دهد. در ضمن، ایجاد اصطکاک بین مهاربند و تیر تا 8 درصد و ایجاد اصطکاک بین مهاربند و ستون تا 17 درصد نسبت به حالت اتصال آزاد می‌تواند ظرفیت باربری را افزایش دهد. از طرفی دیگر استفاده از مهاربند دایره‌ای H شکل با اتصال اصطکاکی به ستون و یا تیر به دلیل کاهش ظرفیت باربری به میزان حداقل 9 درصد نسبت به حالت اتصال گیردار توصیه نمی‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of bearing capacity of the proposed circular lateral bracing system with friction seat connection with column

نویسنده [English]

  • Hossein Parvini Sani
Department of Civil Engineering, Zanjan Branch, Islamic Azad University, Zanjan, Iran
چکیده [English]

To reduce the damage and casualties caused by earthquakes, researchers made efforts to introduce seismic resistant structural systems. One of the new lateral force-resisting systems is the steel circular braced system called “Ogrid”. Previous studies shown the high energy dissipation and ductility of this system. This system has a high capacity to withstand nonlinear deformations after the formation of the first plastic hinge until collapse. In the present study, an attempt has been made to introduce a new type of this brace with different types of brace connection to beam and column and to evaluate its performance. For this purpose, the OGrid is used and different connections of the frame to the circular brace that embrace the connection of the brace to the beam and to the columns, as well as comparing the presence of friction and the absence of friction between the brace and the frame are modeled and the results are reviewed. It is found that by releasing the connection of the circular brace with I-shaped cross section to the column and creating friction between them with a coefficient of 0.5, the bearing capacity increases up to 22% compared to the restrained connection. In this case, before yielding, softening is observed in the proposed model, but after yielding compared to the model with restrained connection, better energy dissipation occurs due to deformations in the circular brace. Meanwhile, bearing capacity increases up to 8% by considering friction between the brace and increases up to 17% by considering friction between the brace and the column comparing with the released connections. On the other hand, the use of H-shaped circular brace with friction connection to the column and/or beam is not recommended due to the reduction of bearing capacity by at least 9% compared to the restrained connection.

کلیدواژه‌ها [English]

  • Nonlinear behavior
  • OGrid Bracing
  • Connection of the brace to the column
  • Connection of the brace to the beam
  • Friction in connections
[1] Banazadeh, M. Parvini Sani, H. and Gholhaki, M. (2013). Decision-making analysis for seismic retrofit based on risk management. Asian Journal of Civil Engineering, 14(5), 735-746.
[2] Parvini Sani, H. Gholhaki, M. and Banazadeh, M. (2018). Simplified direct loss measure for seismic isolated steel moment-resisting structures. Journal of Constructional Steel Research, 147, 313–323.
[3] Parvini Sani, H. Gholhaki, M. Banazadeh, M.  (2017). Seismic performance assessment of isolated low-rise steel structures based on loss estimation. Journal of Performance of Constructed Facilities, 31(4) (2017) 04017028.
[4] Kodur, V. Yahyai, M. Rezaeian, A. Eslami, M. and Poormohamadi, A. (2017). Residual mechanical properties of high strength steel bolts subjected to heating-cooling cycle. Journal of Constructional Steel Research, 131, 122–131.
[5] Eslami, M. and Namba, H. (2016). Elasto-plastic behavior of composite beam connected to RHS column, experimental test results. International Journal of Steel Structures, 16(3), 901–912.
[6] Boostani, M. Rezaifar, O. and Gholhaki, M. (2018). Introduction and seismic performance investigation of the proposed lateral bracing system called “OGrid.” Archives of Civil and Mechanical Engineering, 18(4), 1024–1041.  
[7] Kachooee, A. Kafi, MA. and Gerami, M. (2018). Improving of post buckling behavior concentric braces by using of restricted fuse based on experimental and numerical studies, Journal of Structural and Construction Engineering, 7(1), 199-217 (in Persian).
[8] Gelinas, A. Tremblay, R. and Davaran, A. (2012). Seismic behavior of steel HSS X-bracing of the conventional construction category, ASCE/SEI Structures Congress, Chicago, IL, 1949–1660.
[9] D. Giannuzzi, R. Ballarini, A. Huckelbridge Jr., M. and Pollino, M. Valente. (2013). Braced ductile shear panel: new seismic-resistant framing system. Journal of Structural Engineering, 140 (2), 04013050.
[10] Zhang, W. Zeng, L. Gardoni, P. and Qi, X. (2021). Experimental investigation and low-cycle fatigue behavior of I-shaped steel bracing members with gusset plate connections. Thin-Walled Structures, 162, 107593.
[11] Seker, O. Faytarouni, M. Akbas, B. and Shen, J. (2019). A novel performance-enhancing technique for concentrically braced frames incorporating square HSS. Engineering Structures, 201, 109800.
[12] Rinaldin, G. Fasan, M. Sancin, L. and Amadio, C. (2020). On the behaviour of steel CBF for industrial buildings subjected to seismic sequences. Structures, 28, 2175–2187.
[13] Costanzo, S. D’Aniello, M. and Landolfo, R. (2017). Seismic design criteria for chevron CBFs: Proposals for the next EC8 (part-2). Journal of Constructional Steel Research, 138, 17–37.
[14] Kazemzadeh Azad, S. and Topkaya, C. (2017). A review of research on steel eccentrically braced frames. Journal of Constructional Steel Research, 128, 53–73.
[15] Tanabashi, R. and Naneta, Ishida, T. (1974). On the rigidity and ductility of steel bracing assemblage, Proceedings of the 5th World Conference on Earthquake Engineering, Rome, IAEE, 1974, 834–840.
[16] Qiu, C. and Du, X. (2020). Seismic performance of multistory CBFs with novel recentering energy dissipative braces. Journal of Constructional Steel Research, 168, 105864.
[17]  Güneyisi, EM. and Gültekin, A. (2017). Nonlinear behaviour of midrise steel buildings with gate braced frames. The Open Civil Engineering Journal, 11(Suppl-1, M13), 475-484.
[18] Zahrai, SM. And Cheraghi, A. (2017). Improving cyclic behavior of multi-level pipe damper using infill or slit diaphragm inside inner pipe. Structural Engineering and Mechanics, 64(2), 195–204.
[19] Zahrai, SM. and Cheraghi, A. (2017). Reducing seismic vibrations of typical steel buildings using new multi-level yielding pipe damper. International Journal of Steel Structures, 17(3), 983–998.
[20] Cheraghi. A, and Zahrai, SM. (2017). Cyclic testing of multilevel pipe in pipe damper. Journal of Earthquake Engineering, 23(10), 1695-1718.  
[21] EbadiJamkhaneh, M. HomaioonEbrahimi, A. and ShokriAmiri, M. (2018). Seismic performance of steel-braced frames with an allsteel buckling restrained brace. Practice Periodical on Structural Design and Construction, 23(3):04018016.
[22] Pachideh, G. Gholhaki, M. and Kafi, M. (2020). Experimental and numerical evaluation of an innovative diamond-scheme bracing system equipped with a yielding damper. Steel and Composite Structures,
[23] Pachideh, G. Kafi, M. and Gholhaki, M. (2020). Evaluation of cyclic performance of a novel bracing system equipped with a circular energy dissipater. Structures, 28, 467–481.
[24]  Gholhaki, M. Pachideh, G. Lashkari, R. and Rezayfar, O. (2021). Behaviour of buckling-restrained brace equipped with steel and polyamide casing. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 1–12.
[25] Bazzaz, M. Kheyroddin, A. Kafi, MA. and Andalib, Z. (2012). Evaluation of the seismic performance of off-centre bracing system with ductile element in steel frames. Steel and Composite Structures, 12(5), 445–464.
[26] Bazzaz, M. Kafi, MA. Kheyroddin. A, Andalib Z, Esmaeili, H. (2014). Evaluating the seismic performance of off-centre bracing system with circular element in optimum place. International Journal of Steel Structures, 14(2), 293–304.
[27] Andalib, Z.  Kafi, M.A. and Bazzaz, M. (2010). Using hyper elastic material for increasing ductility of bracing, Proc. 1st Steel & Structures Conf. and 2nd Application of High-Strength Steels in Structural Industry Conf, Tehran, Iran, 466–474.
[28] Andalib, Z. Kafi, MA. Kheyroddin, A. and Bazzaz, M. (2014). Experimental investigation of the ductility and performance of steel rings constructed from plates. Journal of Constructional Steel Research,103, 77–88.
[29] Andalib, Z. Kafi, MA, Kheyroddin, A. Bazzaz, M. and Momenzadeh, S. (2018). Numerical evaluation of ductility and energy absorption of steel rings constructed from plates. Engineering Structures, 169, 94–106.
[30] Albouyeh, F. (2016). Laboratory study of a new structural system “OGRID”. Master of Science Dissertation, Semnan University, Department of civil engineering, Iran (in persian).
[31] Boostani, M. Rezaifar, O. and Gholhaki, M. (2019). Seismic performance investigation of new lateral bracing system called “OGrid-H”. SN Applied Sciences, 1(4).
[32] Shahanas, S and Ramesh, K. (2019). Analysis and Performance of Ogrid Lateral Bracing System, International Research Journal of Engineering and Technology (IRJET), 6(5), 4813-4817.
[33] Shamivand, A. and Akbari, J. (2019). Ring-Shaped Lateral Bracing System for Steel Structures. International Journal of Steel Structures, 20(2), 493–503.
[34] Applied Technology Council ATC. (1994). Guidelines for cyclic seismic testing of components of steel structures, Rep. NO ATC- 24, California.