بررسی مقاومت فشاری، کششی و جذب آب ملات ژئوپلیمر حاوی از ماده سرباره(GGBFS) در مقایسه با پوزولان متاکائولن

نوع مقاله : علمی - پژوهشی

نویسندگان

گروه مهندسی عمران، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران.

چکیده

ژئوپلیمرها مواد آلومینوسیلیکاتی هستند که می توانند جایگزین مناسبی برای انواع بتن می‌باشند، چراکه از طرفی با حذف آلاینده هایی نظیر CO2 ناشی از فرآیند تولید سیمان، به حذف محیط زیست کمک نموده و از طرفی دیگر با کاهش میزان نفوذپذیری بتن، دوام بتن به شدت افزایش می یابد. در این تحقیق خواص مکانیکی و دوام ملات ژئوپلیمری عمل آوری شده در دماهای مختلف مورد بررسی قرار گرفته است. در این راستا از متاکائولن و سرباره کوره آهن (GGBFS) به عنوان ماده اولیه ساخت ملات ژئوپلیمری استفاده شده است. همچنین از سدیم هیدروکسید(سود) با غلظت 12 مولار و سدیم سیلیکات(آب شیشه) به عنوان فعال کننده استفاده شده است. 12 رژیم عمل آوری شامل سه دمای 60، 75 و 90 درجه سانتی گراد و مدت زمان 8، 12، 18 و 24 ساعت به نمونه‌ها اعمال شد و تاثیر آن بر مقاومت فشاری و کششی و جذب آب ملات‌های ژئوپلیمری مورد بررسی قرار گرفت. مقاومت فشاری، کششی و جذب آب نمونه‌های ژئوپلیمری در سنین 3، 7 و 14روزه تعیین گردید. نتایج نشان داد که با افزایش دمای عمل آوری و مدت زمان عمل آوری مقاومت فشاری و کششی نمونه‌ها افزایش می‌یابد و میزان جذب آب نمونه‌ها کاهش می‌یابد. مقاومت فشاری نمونه‌های عمل آوری شده در دمای 90 درجه سانتی گراد به مدت 24 ساعت، بالاترین مقدار معادل 4/62 مگاپاسکال را، دارا می باشد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluating Compressive and Tensile Strength and Water Absorption of Geopolymer Mortar Containing Slag (GGBFS) in Comparison with Pozzolan Metakaolin

نویسندگان [English]

  • Reza Farokhzad
  • AYLAR Mohammadbeigi
Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
چکیده [English]

Geopolymers are aluminosilicate materials that can be a good alternative to various types of concrete, because they help protect the environment by removing pollutants such as CO2 resulting from cement manufacturing process and significantly increase concrete durability by reducing concrete permeability. This study aims to investigate the mechanical properties and durability of geopolymer mortar cured at different temperatures. Therefore, metakaolin and ground-granulated blast-furnace slag (GGBFS) were used as the raw materials for making geopolymer mortar. Sodium hydroxide (caustic soda) with the concentration of 12 M and sodium silicate (water glass) were employed as the activator. In total, 12 curing regimes including three temperatures of 60, 75, and 90 °C and four durations of 8, 12, 18, and 24 h were applied to the samples and its impact on compressive and tensile strength and water absorption of geopolymer mortars was examined. Compressive and tensile strength and water absorption of geopolymer samples were determined after 3, 7, and 14 days. The results indicated the compressive and tensile strength of the samples increased and water absorption of the samples decreased with increasing the curing temperature and duration. Compressive strength of the samples cured at 90 °C for 24 h was at the highest level (62.4 MPa).

کلیدواژه‌ها [English]

  • Geopolymer
  • GGBFS
  • Curing temperature
  • NAOH concentration
  • Metakaolin
  • Compressive strength
1- Rajini, B. and Rao, A.N., 2014. Mechanical properties of geopolymer concrete with fly ash and ggbs as source materials. International Journal of Innovative Research in Science, Engineering and Technology, 3(9), pp.15944-15953.
2- Kumar, B.S.C., Ramesh, K. and Poluraju, P., 2006. An experimental investigation on flexural behavior of GGBS and metakaolin based geopolymer concrete. ARPN journal of engineering and applied sciences, 12(7), pp.2052-2062
3- Vignesh, P. and Vivek, K., 2015. An experimental investigation on strength parameters of flyash based geopolymer concrete with GGBS. International Research Journal of Engineering and Technology (IRJET), 2(02).
4- Omer, S.A., Demirboga, R. and Khushefati, W.H., 2015. Relationship between compressive strength and UPV of GGBFS based geopolymer mortars exposed to elevated temperatures. Construction and Building Materials, 94, pp.189-195.
5- Deb, P.S., Nath, P. and Sarker, P.K., 2014. The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Materials & Design (1980-2015), 62, pp.32-39.
6- Padmakar, K.C. and Kumar, B.S.C., 2017. An Experimental Study on Metakaolin and GGBS Based Geopolymer Concret.International Journal of Civil Engineering and Technology, 8(1), pp.544-557.
7-Mo, B.H., Zhu, H., Cui, X.M., He, Y. and Gong, S.Y., 2014. Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Applied clay science, 99, pp.144-148.
8- Rovnaník, P., 2010. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Construction and building materials, 24(7), pp.1176-1183.
9- Wang, H., Li, H. and Yan, F., 2005. Synthesis and mechanical properties of metakaolinite-based geopolymer.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 268(1-3), pp.1-6
10- Yaseri, S., Hajiaghaei, G., Mohammadi, F., Mahdikhani, M. and Farokhzad, R., 2017. The role of synthesis parameters on the workability, setting and strength properties of binary binder based geopolymer paste. Construction and Building Materials, 157, pp.534-545.
11- Lee WH, Wang JH, Ding YC, Cheng TW. A study on the characteristics and microstructures of GGBS/FA based geopolymer paste and concrete. Construction and Building Materials. 2019 Jun 30;211:807-13.
12- Alomayri T. Experimental study of the microstructural and mechanical properties of geopolymer paste with nano material (Al2O3). Journal of Building Engineering. 2019 Sep 1;25:100788.
13- Li F, Liu L, Yang Z, Li S. Physical and mechanical properties and micro characteristics of fly ash-based geopolymer paste incorporated with waste Granulated Blast Furnace Slag (GGBFS) and functionalized Multi-Walled Carbon Nanotubes (MWCNTs). Journal of Hazardous Materials. 2020 Jul 2;401:123339.
14- Peng, Hui, et al. "Microstructure and microhardness property of the interface between a metakaolin/GGBFS-based geopolymer paste and granite aggregate." Construction and Building Materials 221 (2019): 263-273.‏
15- Kishore, K., & Gupta, N. (2021). Mechanical characterization and assessment of composite geopolymer concrete. Materials Today: Proceedings, 44, 58-62.‏
16- Yaseri, Sajad, et al. "The role of synthesis parameters on the workability, setting and strength properties of binary binder based geopolymer paste." Construction and Building Materials 157 (2017): 534-545.‏
17- Padmakar, M., Barhmaiah, B., & Priyanka, M. L. (2021). Characteristic compressive strength of a geo polymer concrete. Materials Today: Proceedings, 37, 2219-2222.‏
18- Vishnu, N., Kolli, R., & Ravella, D. P. (2021). Studies on Self-Compacting geopolymer concrete containing flyash, GGBFS, wollastonite and graphene oxide. Materials Today: Proceedings, 43, 2422-2427.‏