تلفیق سه ابزار توسعه پایدار، ساخت و ساز ناب و مدلسازی اطلاعات ساختمان با استفاده از مفاهیم علم سنجی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار، دانشکده مهندسی عمران، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

2 دانشکده عمران، هنر و معماری، دانشگاه علوم و تحقیقات ، تهران، ایران

3 عضو هییت علمی دانشگاه آزاد اسلامی واحد علوم تحقیقات

چکیده

مطالعات بسیاری در مورد مدل سازی اطلاعات ساختمان، ساخت ناب و پایداری نه تنها به صورت جداگانه بلکه به صورت دو به دو انجام شده است. با این وجود، در حال حاضر اندک تحقیقاتی وجود دارد که این مفاهیم را به صورت جمعی ادغام کند. به منظور پوشش خلأ موجود در تلفیق سه-گانه این مفاهیم، یک مرور ادبیات قاعده‌مند صورت گرفت. داده‌های این پژوهش 95 مقاله معتبر بین‌المللی می‌باشند که بیشتر بر زمینه‌های تلفیقی دو به دو این مفاهیم متمرکز هستند. با بهره‌گیری از گراندد تئوری که روشی مبتنی بر بررسی خط به خط مقالات و کدگذاری بخشهای مرتبط با هدف مقاله است، در نرم‌افزار atlas.ti به کدهای سه‌گانه‌ای دست یافتیم که نشانگر زمینه‌های تلفیقی هر سه مفهوم هستند. کدهای سه‌گانه در 6 مقوله اصلیِ مدیریت ذینفعان، مدیریت هزینه، مدیریت ضایعات و مصالح مصرفی، مدیریت منابع مصرفی، راندمان پروژه و مدیریت انرژی مصرفی، دسته‌بندی شدند. در ادامه با مقایسه هر کد با سایر کدها، 6 نظریه اصلی ایجاد شد که برای تحلیل نظریه‌ها و اولویت‌بندی آنها، مصاحبه‌ای در قالب یک پرسشنامه‌ی 6 سوالی مطرح گردید و در این میان 10 تن از متخصصان و اساتید این حوزه‌ها نظرات خود را به اشتراک گذاشتند. سپس به آنالیز پرسشنامه با استفاده از روش‌های آماری و نرم‌افزار spss پرداخته شد. پس از تشخیص غیرنرمال بودن متغیرها توسط آزمون کولموگروف اسمیرنوف، برای اولویت‌بندی نظریه‌ها از آزمون ناپارامتریک فریدمن استفاده شد و طبق نتیجه ، تلفیق سه مفهوم مذکور بر عملکرد مدیریت ضایعات و مصالح مصرفی نسبت به حوزه‌های دیگر می‌تواند موثرتر ظاهر شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Using scientific research techniques to investigate future contexts integrating the three concepts of sustainable development, lean construction and building information modelling

نویسندگان [English]

  • Hamidreza Abbasianjahromi 1
  • maryam Pournaghi keykele 2
  • Mehdi Ravanshadnia 3
1 Assistant professor, Department of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran
2 art, civil and architecture department, sience and research university, tehran, Iran
3 Islamic Azad University , Science and Research Branch
چکیده [English]

Many studies have been conducted on the fields of Building Information Modelling, Lean construction and Sustainability not only individually but also pairwise. Despite that, there are currently no researches that integrate these concepts collectively. In order to fill this gap, a systematic literature review was conducted. The input data of this research are 95 valid international articles that are mostly focused on pairwise interaction of these concepts. Using Grounded Theory, which is a method based on line-by-line review of articles and coding of sections related to the purpose of the article and with the help of Atlas.ti software, we found triple codes that represent the integrated fields of all three concepts. The triple codes were placed in 6 main categories: Stakeholder management, cost management, material waste management, resource management, project productivity and energy management. Then, by comparing each code with other codes, 6 main theories were created. To analyse these theories and prioritize them, an interview was presented in the form of a 6-question questionnaire, in which 10 experts and professors expressed their opinions. Then, the questionnaire was analyzed using statistical methods and SPSS software. To that end, Friedmann's non-parametric test was used to prioritize theories after the variables were found to be abnormal by the Kolmogorov-Smirnov test. as a result, combining the three concepts could be more effective on waste material management than other categories.

کلیدواژه‌ها [English]

  • sustainable development
  • BIM
  • lean construction
  • Scientometric
  • Ground Theory
  • Heigermoser, D., de Soto, B. G., Abbott, E. L. S., & Chua, D. K. H. (2019). BIM-based Last Planner System tool for improving construction project management. Automation in Construction104, 246-254.
  • Solaimani, S., & Sedighi, M. (2020). Toward a holistic view on lean sustainable construction: A literature review. Journal of Cleaner Production248, 119213.
  • Carvalho, J. P., Bragança, L., & Mateus, R. (2019). Optimising building sustainability assessment using BIM. Automation in Construction102, 170-182.
  • De Carvalho, A. C. V., Granja, A. D., & Da Silva, V. G. (2017). A systematic literature review on integrative lean and sustainability synergies over a building’s lifecycle. Sustainability9(7), 1156.
  • Hussain, K., He, Z., Ahmad, N., & Iqbal, M. (2019). Green, lean, six sigma barriers at a glance: a case from the construction sector of Pakistan. Building and Environment161, 106225.
  • Bajjou, M. S., Chafi, A., Ennadi, A., & El Hammoumi, M. (2017). The Practical Relationships between Lean Construction Tools and Sustainable Development: A literature review. Journal of Engineering Science & Technology Review10(4).
  • Carvajal-Arango, D., Bahamón-Jaramillo, S., Aristizábal-Monsalve, P., Vásquez-Hernández, A., & Botero, L. F. B. (2019). Relationships between lean and sustainable construction: Positive impacts of lean practices over sustainability during construction phase. Journal of Cleaner Production234, 1322-1337.
  • Kurdve, M., et al., Waste flow mapping to improve sustainability of waste management: a case study approach. Journal of Cleaner Production, 2015. 98: p. 304-315.
  • Khodeir, L.M. and R. Othman, Examining the interaction between lean and sustainability principles in the management process of AEC industry. Ain Shams Engineering Journal, 2018. 9(4): p. 1627-1634.
  • Abd Jamil, A. H., & Fathi, M. S. (2016). The integration of lean construction and sustainable construction: A stakeholder perspective in analyzing sustainable lean construction strategies in Malaysia. Procedia Computer Science100(1), 634-643.
  • Mahalingam, A., Yadav, A. K., & Varaprasad, J. (2015). Investigating the role of lean practices in enabling BIM adoption: Evidence from two Indian cases. Journal of Construction Engineering and Management141(7), 05015006.
  • Lu, Y., Wu, Z., Chang, R., & Li, Y. (2017). Building Information Modelling (BIM) for green buildings: A critical review and future directions. Automation in Construction83, 134-148.
  • Maltese, S., Tagliabue, L. C., Cecconi, F. R., Pasini, D., Manfren, M., & Ciribini, A. L. (2017). Sustainability assessment through green BIM for environmental, social and economic efficiency. Procedia engineering180, 520-530.
  • Sacks, R., Radosavljevic, M., & Barak, R. (2010). Requirements for building information modeling based lean production management systems for construction. Automation in construction19(5), 641-655.
  • Shou, W., Wang, X., Wang, J., Hou, L., & Truijens, M. (2014). Integration of BIM and lean concepts to improve maintenance efficiency: A case study. In Computing in Civil and Building Engineering (2014)(pp. 373-380).
  • Ahuja, R., Sawhney, A., & Arif, M. (2017). Driving lean and green project outcomes using BIM: A qualitative comparative analysis. International Journal of Sustainable Built Environment6(1), 69-80.
  • Saieg, P., Sotelino, E. D., Nascimento, D., & Caiado, R. G. G. (2018). Interactions of building information modeling, lean and sustainability on the architectural, engineering and construction industry: a systematic review. Journal of cleaner production174, 788-806.
  • Bhattacharya, A., Nand, A., & Castka, P. (2019). Lean-green integration and its impact on sustainability performance: A critical review. Journal of Cleaner Production236, 117697.
  • Leon, H. C. M., & Calvo-Amodio, J. (2017). Towards lean for sustainability: Understanding the interrelationships between lean and sustainability from a systems thinking perspective. Journal of cleaner production142, 4384-4402.
  • Garza-Reyes, J. A. (2015). Lean and green–a systematic review of the state of the art literature. Journal of Cleaner Production102, 18-29.
  • Koranda, C., Chong, W. K., Kim, C., Chou, J. S., & Kim, C. (2012). An investigation of the applicability of sustainability and lean concepts to small construction projects. KSCE Journal of Civil Engineering16(5), 699-707.
  • Marhani, M. A., Jaapar, A., & Bari, N. A. A. (2012). Lean Construction: Towards enhancing sustainable construction in Malaysia. Procedia-social and behavioral sciences68, 87-98.
  • Ogunbiyi, O., Goulding, J. S., & Oladapo, A. (2014). An empirical study of the impact of lean construction techniques on sustainable construction in the UK. Construction innovation.
  • Francis, A., & Thomas, A. (2020). Exploring the relationship between lean construction and environmental sustainability: A review of existing literature to decipher broader dimensions. Journal of Cleaner Production252, 119913.
  • Peng, W., & Pheng, L. S. (2011). Lean and green: emerging issues in the construction industry–a case study. Proceedings of the EPPM, Singapore, 20-21.
  • Santos, R., Costa, A. A., Silvestre, J. D., & Pyl, L. (2019). Informetric analysis and review of literature on the role of BIM in sustainable construction. Automation in Construction103, 221-234.
  • Alwan, Z., Jones, P., & Holgate, P. (2017). Strategic sustainable development in the UK construction industry, through the framework for strategic sustainable development, using Building Information Modelling. Journal of Cleaner Production140, 349-358.
  • Liu, H., Sydora, C., Altaf, M. S., Han, S., & Al-Hussein, M. (2019). Towards sustainable construction: BIM-enabled design and planning of roof sheathing installation for prefabricated buildings. Journal of Cleaner Production235, 1189-1201.
  • Ahmad, T., Aibinu, A., & Thaheem, M. J. (2017). BIM-based iterative tool for sustainable building design: A conceptual framework. Procedia engineering180, 782-792.
  • Mohsenijam, A., & Lu, M. (2016). Achieving sustainable structural steel design by estimating fabrication labor cost based on BIM data. Procedia Eng145, 654-661.
  • Oti, A. H., & Tizani, W. (2015). BIM extension for the sustainability appraisal of conceptual steel design. Advanced Engineering Informatics29(1), 28-46.
  • Jalaei, F., Jrade, A., & Nassiri, M. (2015). Integrating decision support system (DSS) and building information modeling (BIM) to optimize the selection of sustainable building components. Journal of Information Technology in Construction (ITcon)20(25), 399-420.
  • Wong, J. K. W., & Kuan, K. L. (2014). Implementing ‘BEAM Plus’ for BIM-based sustainability analysis. Automation in construction44, 163-175
  • Azhar, S., Carlton, W. A., Olsen, D., & Ahmad, I. (2011). Building information modeling for sustainable design and LEED® rating analysis. Automation in construction20(2), 217-224.
  • Shoubi, M. V., Shoubi, M. V., Bagchi, A., & Barough, A. S. (2015). Reducing the operational energy demand in buildings using building information modeling tools and sustainability approaches. Ain Shams Engineering Journal6(1), 41-55.
  • Jalaei, F., & Jrade, A. (2014). Integrating Building Information Modeling (BIM) and Energy Analysis Tools with Green Building Certification System to Conceptually Design Sustainable Buildings. Itcon19, 494-519.
  • Cheng, J. C., & Das, M. (2014). A BIM-based web service framework for green building energy simulation and code checking. Journal of Information Technology in Construction (ITcon)19(8), 150-168.
  • Ahmad, T., & Thaheem, M. J. (2018). Economic sustainability assessment of residential buildings: A dedicated assessment framework and implications for BIM. Sustainable cities and society38, 476-491.
  • Hamdi, O., & Leite, F. (2012, July). BIM and Lean interactions from the bim capability maturity model perspective: A case study. In IGLC 2012-20th Conference of the International Group for Lean Construction, The International Group for Lean Construction.
  • Arayici, Y., Coates, P., Koskela, L., Kagioglou, M., Usher, C., & O'Reilly, K. (2011). Technology adoption in the BIM implementation for lean architectural practice. Automation in construction20(2), 189-195.
  • Ahuja, R., Sawhney, A., & Arif, M. (2014, June). BIM based conceptual framework for lean and green integration. In Proceedings of the 22nd Conference of the International Group of Lean Construction (pp. 123-132).
  • Charmaz, K. (2006). Grounded theory: A practical guide through qualitative analysis. Thousand Oaks, CA: Sage. Cornell, S., Berkhout, F., Willemijn, T., Tàbara, D., Jäger, J., Chabay, L.,… Kerkhoff, L.(2013). Opening up knowledge systems for better responses to global environmental change. Environmental Science & Policy, 28, 60-70.
  • Sajedeh, M., Fleming, A., Talebi, S., & Underwood, J. (2016). Development of an Experimental Waste Framework based on BIM/Lean concept in construction design.
  • Rosenbaum, S., Toledo, M., & Gonzalez, V. (2012, July). Green-lean approach for assessing environmental and production waste in construction. In Proceedings for the 20th Annual Conference of the IGLC, San Diego, USA.
  • Fercoq, A., Lamouri, S., & Carbone, V. (2016). Lean/Green integration focused on waste reduction techniques. Journal of Cleaner production, 137, 567-578.
  • Chassiakos, A., Karatzas, S., & Farmakis, P. (2019). BIM and Lean-Business Process Reengineering for Energy Management Optimization of Existing Building Stock. In Advances in Informatics and Computing in Civil and Construction Engineering (pp. 711-718). Springer, Cham.
  • Chen, C. J., Chen, S. Y., Li, S. H., & Chiu, H. T. (2017). Green BIM-based building energy performance analysis. Computer-Aided Design and Applications, 14(5), 650-660.
  • Choo, S. Y., Lee, K. H., & Park, S. K. (2012). A Study on LOD (Level of Development) for Development of Green BIM Guidelines-Focused on Energy Performance Estimation. Journal of the Architectural Institute of Korea Planning & Design, 28(6), 37-47.