بررسی اثر نامنظمی‌های قطع سیستم باربر جانبی و طبقه‌ خیلی نرم ‌بر عملکرد لرزه ای قاب‌های مهاربندی همگرا

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار دانشکده مهندسی عمران دانشگاه ایوانکی، سمنان، ایران

2 استادیار دانشکده عمران دانشگاه ایوانکی، سمنان، ایران

3 کارشناسی ارشد مهندسی سازه، دانشکده مهندسی عمران، دانشگاه ایوانکی، سمنان، ایران

4 گروه عمران، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران

چکیده

یکی از مسائل مهم در ساختمان‌ها، نامنظمی در پلان یا ارتفاع سازه می‌باشد که باعث افزایش خرابی‌های لرزه‌ای می‌گردد. در نامنظمی در ارتفاع، تغییرات ناگهانی در ویژگی‌های دینامیکی سازه شامل جرم، سختی و مقاومت جانبی رخ می‌دهد. در نتیجه، مرحله‌ی اتخاذ تصمیم در مورد پیکربندی ساختمان از اهمیت اساسی برخوردار است. ساختمان‌های نامنظم بایستی قادر به مقاومت در برابر نیروهای جانبی ناشی از زلزله و باد باشند. یکی از رایج ترین سیستم‌‌های مقاوم در برابر زلزله‌ در ساز‌های فولادی، سیستم مهاربندی می‌باشد که به دلیل عملکرد مناسب در زلزله‌های گذشته و کاهش جابجایی نسبی ساختمان‌ها مورد توجه مهندسین قرارگرفته است. اما ممکن است برخی محدودیت‌های معماری باعث جابجایی مهاربندها در تراز طبقات شود که مشمول نامنظمی قطع سیستم باربرجانبی گردد و یا این که در اثر‌ ضعف نظارت در برخی طبقات، مهاربند جانبی ضعیف یا حذف شده باشد‌ که در این صورت امکان ایجاد نامنظمی طبقه‌ی خیلی نرم در ساختمان وجود دارد.‌ در این تحقیق، قاب‌های‌ 5 طبقه با در نظر گرفتن 7 سناریو در سه حالت منظم، نامنظم طبقه‌ی خیلی نرم و نامنظم قطع سیستم باربر جانبی‌ در نظر گرفته شده است. این قاب‌ها بر اساس ضوابط لرزه‌ای استاندارد 2800 طراحی شده‌اند و سپس عملکرد آن‌ها با استفاده از روش‌های تحلیل استاتیکی معادل، دینامیکی طیفی‌ و دینامیکی تاریخچه زمانی تحت زلزله‌های نزدیک به گسل توسط نرم افزار‌ SAP‌2000 ارزیابی شده‌‌است. هدف از این تحقیق، بررسی دقت روش‌های تحلیل استاتیکی معادل، دینامیکی طیفی و دینامیکی تاریخچه زمانی می‌باشد. نتایج نشان داد که روش تحلیل دینامیکی تاریخچه زمانی نسبت به سایر روش‌های مورد مطالعه دقت بیش‌تری دارد. به عنوان نمونه، درصد خطای پاسخ تغییر مکان حداکثر قاب دارای نامنظمی قطع سیستم باربر جانبی در تحلیل استاتیکی معادل نسبت به تحلیل‌های طیفی و تاریخچه زمانی به ترتیب 15 و 77 درصد می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation the Effect of Cutting the Lateral Bearing System and Very Soft Story Irregularities on the Seismic Performance of Concentric Braced Frames

نویسندگان [English]

  • vahid saberi 1
  • hamid saberi 2
  • Mojtaba Babanegar 3
  • Abbasali Sadeghi 4
  • Ali Moafi 3
1 Assistant Professor, Department of Civil Engineering, University of Eyvanekey, Semnan, Iran
2 Assistant Professor, Department of Civil Engineering, University of Eyvanekey, Semnan, Iran
3 M.Sc.in Structural Engineering, Faculty of Civil Engineering, Eyvanekey University,Semnan, Iran
4 Department of Civil Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
چکیده [English]

One of the most important issues in buildings is irregularity in the plan or height of the structure, which causes increasing the seismic damages. In irregularity in height, sudden changes in the dynamic properties of the structure including mass, lateral stiffness and strength of the structure occur. Therefore, the stage of making decision for determining the building configuration has a fundamental importance Irregular buildings must be able to withstand the lateral forces of earthquakes and winds. One of the most common earthquake-resistant systems in steel structures is the bracing system, which has been considered by engineers due to its good performance in previous earthquakes and reduced drift of buildings. However, some architectural constraints may cause the braces to be moved to the story level, which is subjected to irregularity of cutting the lateral bearing system, or the lateral braces may be weakened or removed due to poor supervision in some stories, in which case the story may be irregular. There is very soft story in the building. In this study, 7 scenarios in three states such as regular, very soft irregularity, and irregularity of cutting the lateral bearing system is considered for 5-story frame. These frames are designed based on seismic guidelines of standard 2800, and then, the performance of them has been evaluated by SAP‌2000 software using analyses methods such as equivalent static, spectral dynamics and time history dynamics under near-fault earthquakes. The aim of this study is to investigate the accuracy of these methods. The results showed that time history dynamic analysis is more accurate than other methods. For example, the error rate of the maximum displacement response of frame with irregularity of cutting the lateral bearing system in equivalent static analysis compared to spectral and time history dynamic analyses are 15% and 77%, respectively.

کلیدواژه‌ها [English]

  • Height Irregularity
  • Cutting the Lateral Bearing System
  • very soft story
  • Equivalent Static Analysis
  • Spectral Dynamic Analysis
  • Time History Dynamic Analysis
  • Near-Fault Earthquake
[1] BHRC. (2014). Iranian code of practice for seismic resistant design of buildings. Tehran: Building and Housing Research Centre, Standard No. 2800. (In Persian).
[2] Aranda, G. R., and Rascon, O. A., (1986). An improved method for seismic analysis of buildings irregular in elevation, in Proceedings of the Eighth European Conference on Earthquake Engineering, Lisbon, Portugal, vol. 6, pp. 9–16.
[3] Costa, A. G., Oliveira, C. S., and Duarte, R. T., (1988). Influence of vertical irregularities on seismic response of buildings, in Proceedings of the Ninth World Conference on Earthquake Engineering, Tokyo, Japan, vol. 5, pp. 491–496.
[4] Tso, W.K., Ying, H. (1992). Lateral Strength Distribution Specification to Limit the Additional Inelastic Deformation of Torsional Unbalanced Structures. Engineering Structures, 14, 263-277.
[5] Mittal, A.K., Jain, A.K. (1995). Effective Strength Eccentricity Concept for Inelastic Analysis of Asymmetric Structures. Earthquake Eng. and Structural Dynamics, 24, 69-84.
[6] De Stefano, M., Faella, G., Ramasco, R. (1993). Inelastic Response and Design Criteria of Plan-Wise Asymmetric Systems. Earthquake Engineering and Structural Dynamics, 22, 245-259.
[7] Myslimaj, B., Tso, W.K. (2002). A Strength Distribution Criterion for Minimizing Torsional Response of Asymmetric Wall-Type Systems. Earthquake Engineering and Structural Dynamics, 31, 99-120.
[8] Aziminejad, A., Moghadam, A.S. (2009). Performance of Asymmetric Multi-storey Shear Buildings with Different Strength Distributions. Journal of Applied Sciences, 9(6): 1082-1089.
[9] Iztok, P., Fajfar, P. (2005). On the Inelastic Torsional Response of Single-Storey Structures Under Bi-axial Excitation. Earthquake Eng. and Structural Dynamics, 34, 931-941.
[10] Marusic, D., Fajfar, P. (2005). On the Inelastic Seismic Response of Asymmetric Buildings under Bi-Axial Excitation, Earthquake Eng. and Structural Dynamics, 34, 943-963.
[11] Naresh, B.G., Kumar, A. (2012). Seismic Performance Evaluation of Torsional Asymmetric Buildings. International Journal of Science and Engineering Research, Volume 3, Issue 6.
[12] Lucchini, A., Monti, G., Kunnath, S. (2009). Seismic Behavior of Single-story Asymmetric-plan Buildings Under Uniaxial Excitation. Earthquake Engng Struct. Dyn, 38:1053–1070.
[13] Köber, D., Zamfirescu, D. (2012). Issues Concerning General Torsion in Code Provisions. The 15th World Conference on Earthquake Engineering, Lisboa.
[14] Roy, R., Chakroborty, S. (2013). Seismic Demand of Plan-asymmetric Structures: a revisit. Earthquake Eng & Eng Vib, 12: 99-117.
[15] Aziminejad, A., Moghadam, A.S., Tso, W.K. (2008). A New Methodology For Designing Multi-story, Asymmetric Buildings. The 14th World Conference on Earthquake Engineering, October 12-17, Beijing, China.
[16] ­ Ketabforoush Badri, R, Sarvghad-Moghadam, A, Nekoei, M. (2016). Influence of the Mass Eccentricity on the Margin of Safety against the Collapse of R‌C-S‌M‌F Buildings under Extreme Earthquakes. Sharif Journal of Civil Engineering, 32.2(2.2), 11-23.
[17] Feriz Jarrahi, H, Keramati, A. (2017). Performance Levels of Tall and Irregular RC Structures, before and after Reinforcing by Steel Bracing, under Nonlinear Static and Dynamic Analysis, Journal of Civil Engineering Ferdowsi, 29(2), 73-90.
[18] E. Fereshtehnejad, M. Banazadeh and A. Shafieezadeh, (2016). System reliability-based seismic collapse assessment of steel moment frames using incremental dynamic analysis and Bayesian probability network, Engineering Structures, 118, 274-286.
[19] F.M. Nazri, P.Y. Ken, (2014). Seismic performance of moment resisting steel frame subjected to earthquake excitations. Front. Struct. Civ. Eng. 8, 19-25.
[20] A. Elkady, and D. G. Lignos, (2017). Full-Scale Cyclic Testing of Deep Slender Wide-Flange Steel Beam-Columns under Unidirectional and Bidirectional Lateral Drift Demands. 16th World Conference on Earthquake Engineering (16WCEE), Santiago, Chile, num. 944.
[21] Mehdizadeh, K., Karamodin, A., (2017). Probabilistic Assessment of Sidesway Collapse of Steel Moment Frames (Ordinary, Intermediate and Special) under Earthquake. Journal of Structural and Construction Engineering, Volume 4, No. 3, pages 129-147.
[22] Mehdizadeh, K., Karamodin, A., (2017). Evaluation the Possibility of the Occurrence of Progressive Collapse in Steel Moment Frames (Ordinary, Intermediate and Special) Due to Sudden Column Removal. Journal of Structural and Construction Engineering, Volume 5, No. 3, pages 85-105.
[23] Mehdizadeh, K., Karamodin, A. & Sadeghi, A. (2020). Progressive Sidesway Collapse Analysis of Steel Moment-Resisting Frames under Earthquake Excitations. Iran J Sci Technol Trans Civ Eng 44, 1209–1221.
[24] Mehdizadeh, K., Karamodin, A., (2018). Investigation of the Effect of Uncertainty of the Ibara-Medina-Krawinkler Model Parameters on Seismic Collapse Capacity in Steel Moment Resisting Frames. Journal of Structural and Construction Engineering, Volume 6, No. 2, pages 45-62.
[25] Kheyroddin, A. Gholhaki, M.  Pachideh, Gh. (2019). Seismic Evaluation of Reinforced Concrete Moment Frames Retrofitted with Steel Braces Using IDA and Pushover Methods in the Near-Fault Field, Journal of Rehabilitation in Civil Engineering 7-1, 159-173.
[26] Saberi, V., Saberi, H., Sadeghi, A., (2020). Collapse Assessment of Steel Moment Frames Based on Development of Plastic Hinges, Journal of Science and Technology. (In Persian).
[27] Sadeghi, A., Hashemi, S., Mehdizadeh, K. (2020). Probabilistic Assessment of Seismic Collapse Capacity of 3D Steel Moment-Resisting Frame Structures. Journal of Structural and Construction Engineering. (In Persian).
[28] Pachideh, G., Kafi, M., Gholhaki, M. (2020). Experimental and Numerical Evaluation of an Innovative Diamond-Scheme Bracing System Equipped with a Yielding Damper. Amirkabir Journal of Civil Engineering. (In Persian).
[29] Pachideh, G., Gholhaki, M., Kafi, M. (2020). Experimental and numerical evaluation of an innovative diamond-scheme bracing system equipped with a yielding damper. Steel and Composite Structures, 36(2), 197-211.
[30] Pachideh, G., Kafi, M., Gholhaki, M. (2020). Evaluation of cyclic performance of a novel bracing system equipped with a circular energy dissipater, Structures, 28, 467-481.
[31] Chopra, A.K. and Goel, R.K. (2002). A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake Engng. Struct. Dyn. 31: 561-582.
[32] Habibullah, A. (2019), SAP2000-Three Dimensional Analysis of Building Systems. Manual. Computers and Structures Inc., Berkeley, California.
[33] Code, U. B, (1997). UBC-97, American Association of Building Officials, Whittier, CA.
[34] ASCE 7-10. (2010). Minimum Design Loads for Building and Other Structures, ASCE/SEI 7-10, American Society of Civil Engineers, Reston, Virginia, USA, 2010.
[35] INBC. (2013). Design Loads for Buildings. Tehran: Ministry of Housing and Urban Development, Iranian National Building Code, Part 6. (In Persian).
[36] AISC 360. Specifications for structural steel buildings. Chicago: American Institute of Steel Construction; 2016.
[37] INBC. (2013). Design and Construction of Steel Structures. Tehran: Ministry of Housing and Urban Development, Iranian National Building Code, Part 10. (In Persian).
[38] PEER Ground Motion Database, Pacific Earthquake Engineering Research Centre, Web Site: http://peer.berkeley.edu/peer_ground_motion_database
[39] ­SeismoSignal, (2020). Constitutes a simple, yet efficient, package for the processing of strong-motion data.