توسعه منحنی شکنندگی لرزه ای قاب های دارای مهاربند کمانش‌تاب مجهز به مصالح هوشمند تحت توالی زلزله اصلی و پس لرزه

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی عمران، دانشکده مهندسی شهید نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان، ایران

2 استادیار، گروه مهندسی عمران، واحد رامسر، دانشگاه آزاد اسلامی، رامسر، ایران

3 دانشجوی دکتری، گروه مهندسی عمران، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران

چکیده

قاب‌های دارای مهاربند کمانش‌تاب (BRB)، شکل‌پذیری و ظرفیت استهلاک انرژی مطلوبی دارند اما این مهاربندها با توجه به عدم کمانش در برابر فشار، دارای تغییرشکل‌های پسماند می‌باشند. ازاین‌رو استفاده از آلیاژ حافظه‌دار شکلی (SMA) در قاب‌های مذکور به‌منظور کاهش آسیب‌پذیری لرزه‌ای مرتبط با جابجایی ماندگار مؤثر می‌باشد. این آلیاژها بدون نیاز به تعویض پس از وقوع زلزله و توانایی تغییرشکل‌های زیاد و برگشت‌پذیری به حالت اولیه خود شناخته می‌شوند. تحلیل‌ شکنندگی لرزه‌ای یکی از مهم‌ترین روش‌ها در طراحی بر مبنای عملکرد می‌باشد که منجر به توسعه‌ی منحنی‌های شکنندگی می‌گردند. منحنی‌ شکنندگی ابزاری توانمند برای ارزیابی احتمالاتی آسیب‌پذیری لرزه‌ای سازه‌ها به شمار می‌رود. در این مقاله، رفتار لرزه‌ای قاب‌های مجهز به مهاربند کمانش‌تاب و تأثیر اضافه کردن آلیاژ حافظه‌دار شکلی موردمطالعه قرار گرفته‌است. بدین منظور سه قاب‌ دوبعدی با تعداد طبقات 3‌، 6 و 9 در‌ نرم-افزارOpenSees در نظر گرفته‌شده است. عملکرد قاب‌های دارای مهاربندهای کمانش تاب در دو حالت با و بدون آلیاژهای حافظه‌دار شکلی با استفاده از تحلیل‌های دینامیکی غیرخطی تاریخچه زمانی بررسی‌شده است. برای توسعه‌ی منحنی‌های شکنندگی از 7 شتاب‌نگاشت تکان قوی شامل زلزله‌ی اصلی و پس‌لرز‌ه‌های متوالی استفاده‌شده است. با تعریف سه سطح عملکردی استفاده بی‌وقفه‌ (IO)، ایمنی جانی (LS) و آستانه‌ی فروریزش (CP) و بر اساس حداکثر تغییرشکلِ نسبی میان طبقه‌ای و حداکثر برش پایه، مقادیر توابع احتمال فرا گذشت از سطوح عملکردی محاسبه‌شده‌اند. از مقایسه‌ی منحنی‌های شکنندگی مشخص شد که قابِ دارای آلیاژ حافظه‌دار شکلی اغلب دارای محدوده‌ی عملکردی IO و ‌‌ LSمی‌باشد و احتمال رخداد سطح عملکردی آستانه‌ی فروریزش 38 درصد و در حالت بدون آلیاژ حافظه‌دار شکلی دارای محدوده‌ی عملکردی CP و با احتمال 65 درصد خواهد بود. با استفاده از آلیاژ حافظه‌دار شکلی در این قاب‌ها می‌توان هزینه‌ی بازیابی سیستم خسارت‌دید‌ه‌ی ساختمانی را کاهش داده و سیستم برگشت‌پذیرتری داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Seismic Fragility Curve Development of Frames with BRB’s Equipped with Smart Materials subjected to Mainshock-Aftershock Ground Motion

نویسندگان [English]

  • Seyede vahide Hashemi 1
  • Majid Pouraminian 2
  • Abbasali Sadeghi 3
1 PhD Candidate, Department of Civil Engineering, Faculty of Engineering (Shahid Nikbakht), University of Sistan and Baluchestan, Zahedan, Iran
2 Department of civil engineering , Islamic Azad University, Ramsar Branch , Ramsar, Iran
3 PhD Candidate, Department of Civil Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
چکیده [English]

The frames with Buckling Restrained Braces (BRB’s) are used as a lateral system. The braces often have a limit amount of ductility and dissipated energy in cyclic loading. Therefore, the use of Shape Memory Alloys (SMA’s) in braced frames with regard to the specific properties of these can be an effective improvement in the seismic behaviour of frames. These alloys become known without the need for replacement after an earthquake and the possibility of many deformations and reversal to initial state. Seismic fragility analysis is one of the most important methods in seismic performance-based design that which lead to seismic fragility curves. Fragility curve is a powerful tool for probabilistic vulnerability assessment of structures. In this paper, seismic behavior of frames with BRB’s and the effect of utilizing SMA’s were studied. Then, three 2D-frames with 3, 6 and 9 story were utilized. The OpenSees software used for the nonlinear time history analysis of frames. The BRB’s considered in two cases, with and without SMA’s. For development of fragility curves, 7 strong ground motion accelerograms including main shock-aftershock earthquake records utilized. By defining the three performance levels for Immediate Occupancy (IO), Life Safety (LS) and Collapse Prevention (CP) based on maximum drift and base shear, the values of the probability of exceedance from these thresholds has been calculated. By comparison the achieved curves, it was found that the frames with the SMA often has the range of IO and LS performance, and the probability of occurrence of the CP level is 38% and in the case of the without SMA the CP performance level will have the of 65%. Using a SMA’s in these frames can reduce the cost of restoring and recovering of damaged systems and make the more resilience building system.

کلیدواژه‌ها [English]

  • Fragility curve
  • Buckling Restrained Brace (BRB)
  • Shape Memory Alloy (SMA)
  • Mainshock-Aftershock Ground Motion Records
  • Resilience
[1] Miranda, E., Betro, V. (1994), Evaluation of strength Reduction Factors for Earthquake Resistant Design, Earthquake Spectra 10(2), 357-379.
[2] Asgarian, B. Moradi, S. (2011), Seismic response of steel braced frames with shape memory alloy braces, Journal of Constructional Steel Research 67(1), 65-74.
[3] Maurya, A., Eatherton, M.R.Ryota Matsui, R., Florig, S.H. (2016), Experimental investigation of miniature buckling restrained braces for use as structural fuses, Journal of Constructional Steel Research 127,  54-65.
[4] Ozcelik, R., Dikiciasik, E., Erdil, F. (2017), The development of the buckling restrained braces with new end restrains,  Journal of Constructional Steel Research 138,  208-220.
[5] Shen, J., Seker, O., Akbas, B., Seker, P., Momenzadeh, S.B., Faytarouni, M. (2017), Seismic performance of concentrically braced frames with and without brace buckling, Engineering Structures 141, 461-481.
[6] Canxing, Q., Yichen, Z., Han, L., Bing, Q., Hetao, H., Li, T. (2018), Seismic performance of Concentrically Braced Frames with non-buckling braces, Engineering Structures 154, 93-102.
[7] Nazarimofrad, E., Shokrgozar, A., (2019), Seismic performance of steel braced frames with self‐centering buckling‐restrained brace utilizing superelastic shape memory alloys, Struct Design Tall Spec Build.
[8] Rostam Alilou, A. A. & Pouraminian, M. (2019). Seismic Fragility Assessment of RC Frame Equipped by Visco-Elastic Dampers Using NLTHA and FNA. American Journal of Engineering and Applied Sciences 12(3), 359-367.
[9] Pouraminian, M., Hashemi, S., Sadeghi, A., Pourbakhshian, S. (2020). Probabilistic Assessment the Seismic Collapse Capacity of Buckling-Restrained Braced Frames Equipped with Shape Memory Alloys. Journal of Structural and Construction Engineering. (In Persian).
[10] Sadeghi, A., Hashemi, S., Mehdizadeh, K. (2020). Probabilistic Assessment of Seismic Collapse Capacity of 3D Steel Moment-Resisting Frame Structures. Journal of Structural and Construction Engineering. (In Persian).
[11] Saberi, V., Saberi, H., Sadeghi, A., (2020). Collapse Assessment of Steel Moment Frames Based on Development of Plastic Hinges, Journal of Science and Technology. (In Persian).
[12] Mehdizadeh, K., Karamodin, A. & Sadeghi, A. (2020). Progressive Sidesway Collapse Analysis of Steel Moment-Resisting Frames under Earthquake Excitations. Iran J Sci Technol Trans Civ Eng 44, 1209–1221.
[13] Brandon W.Fuqua, )2009), Buckling Restrained Braced Frames As a Seismic Force Resisting System, submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE, Kansas State University.
[14] Uang, C.M., Tsai, K.C.  )2004(, Research and application of buckling-restrained braced frames, Steel Structures 4(4), 301-13.
[15] Han, Y.L., Li, Q., Li A.Q., Leung, A., Lin, P.H. (2003), Structural vibration control by shape memory alloy damper, Earthquake engineering & structural dynamics 32(3), 483-94.
[16] Ocel, J., DesRoches, R., Leon, R.T., Hess, W.G., Krumme, R., Hayes, J.R. (2005), Steel beam-column connections using shape memory alloys, Structural engineering 130(5).
[17] Cismasiu, C., Dos Santos, F.P.A. (2008), Numerical simulation of a semi-active vibration control device based on super elastic shape memory alloy wires, Smart Materials and Structures 17(2), 936-954.
[18] Corbi, O. (2003), Shape memory alloys and their application in structural oscillations attenuation, Simulation Modelling Practice and Theory 11, 387–402.
[19] Shook, D.A., Roschke, P.N., and Ozbulut, O. E. (2008), Superelastic semiactive damping of a base-isolated structure. Structural Control and Health Monitoring 15, 746–768.
[20] Dolce, M., Donatello, C., and Ponzo, F.C. (2007), Shaking-table tests on reinforced concrete frames with different isolation systems, Earthquake Engineering and Structural Dynamics 36, 573–596.
[21] Andrawes, B., DesRoches, R. (2007), Comparison between Shape Memory Alloy Restrainers and and Other Bridge Retrofit Devices. ASCE Journal of Bridge Engineering 12(6), 700–709.
[22] DesRoches, R., Delemont, M. (2002), Seismic retrofit of simply supported bridges using shape memory alloys. Engineering Structures 24, 325–332.
[23] Alam, M. S., Youssef, M. A., and Nehdi, M. (2007), Utilizing shape memory alloys to enhance the performance and safety of civil infrastructure: a review. Canadian Journal of Civil Engineering 34, 1075–1086.
[24] Nasserasadi, K. Ghafory-Ashtiany, M. Eshghi, S. Zolfaghari, M.R. (2009), Developing Seismic Fragility Function of Structures By Stochastic Approach, Asian Journal of Civil Engineering (Building and Housing) 10(2), 183-200.
[25] Lignos, D.G. Karamanci, E. (2013), Drift-Based and Dual-Parameter Fragility Curves for Concentrically Braced Frames in Seismic Regions. Journal of Constructional Steel Research 90, 209–220.
[26] Mazzoni, S., Mckenna, F., Scott, M.H., Fenves, G.L. (2006) OpenSees Command Language Manual. http://OpenSees.Berkeley.edu/OpenSees/manuals/ user manual/OpenSees Command Language Manual.pdf.
[27] Miller, D.J. (2011), Development and experimental validation of self-centering buckling-restrained braces with shape memory alloy, Master's dissertation, University of Illinois at Urbana–Champaign.
[28] FEMA 355C, Systems Performance of Steel Moment Frames Subject to Earthquake Ground Shaking, 2000.
[29] Suita, K., Yamada, S., Tada, M. Kasai, K. Matsuoka, Y. and Sato, E. (2007), E-Defence tests on full-scale steel buildings: Part 2 − Collapse experiments on moment frames, Proc. Structures Congress 2007, ASCE, Long Beach 247-18.
[30] Taftali, B. (2007), Probabilistic seismic demand assessment of steel frames with shape memory alloy connections, PhD. Dissertation, Georgia Institute of Technology, َAtlanta.
[31] Ruiz-Garcia, J., Negrete-Manriquez, C, )2010(, Evaluation of drift demands in existing steel frames under as-recorded far-field and near-fault mainshock–aftershock seismic sequences, Engineering Structures 33(2), 621-634.
[32]­PEER Ground Motion Database, Pacific Earthquake Engineering Research Centre, Web Site: http://peer.berkeley.edu/peer_ground_motion_database.
[33] ­SeismoSignal (2018), constitutes a simple, yet efficient, package for the processing of strong-motion data.
[34] No, S., 2800, Iranian Code of Practice for Seismic Resistant Design of Buildings, fourth Revision, (2013), Building and Housing Research Centre, Iran.
[35] PEER report.
[36] Commentary of Instruction for seismic Rehabilitation of Existing Buildings NO: 361.