بررسی عملکرد حسگر فشارسنج بتنی با قابلیت خود تشخیصی در پایش سطح سلامت عضو سازه ای

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار دانشکده مهندسی عمران دانشگاه تربیت دبیر شهید رجائی

2 عمران، دانشکده فنی و مهندسی، دانشگاه تربیت دبیر شهید رجایی،تهران،ایران

چکیده

استفاده از حسگرهای بتنی باقابلیت خود تشخیصی به منظور تخمین میزان نیروی وارده یا برآورد سطوح خسارت به سازه به عنوان یک رویکرد نوین در مطالعات پایش سطح سلامت سازه‌ها مورد توجه قرار گرفته است. در این تحقیق امکان استفاده از حسگرهای فشارسنج الکتریکی بتنی به‌عنوان حسگرهای تعیین بار یا تنش وارده به ستون بتنی بررسی شده است. اهمیت این تحقیق در توسعه زیرساخت هوشمند بر اساس پاسخ حسگرهای بتنی در مقابل حسگرهای متداول موجود مورد توجه است. برای این منظور سنسورهای مختلفی بتنی با درصدهای مختلف نانولوله‌کربن ساخته شد و تحت بارگذاری دینامیکی فشاری قرار گرفتند و حسگر مناسب با حساسیت مطلوب و اغتشاش حداقل با اضافه نمودن 0.15 درصد وزنی سیمان، نانولوله کربن بدست آمد. در ادامه به‌منظور شبیه‌سازی عملکرد ستون بتنی تحت بار خارجی تا لحظه شکست و تحلیل رفتار آن بر اساس پاسخ حسگر بتنی فشارسنج الکتریکی، یک حسگر بتنی کوچک مکعبی به ابعاد 5 سانتیمتر ساخته شد و در میان یک ستون بتنی جای ‌داده شد. با بارگذاری ستون بتنی تا لحظه شکست، خروجی حسگر برداشت و رفتار ستون بتنی بر اساس پاسخ حسگر بتنی مورد تحلیل و بررسی قرار گرفت. نتایج نشان داد حسگر بتنی می‌تواند با دقت مناسبی مقدار نیروی وارده به ستون را تخمین زده فازهای مختلف بتن تحت روند افزایش بارگذاری را متمایز سازد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Properties and mechanisms of the self-sensing piezoelectric concrete sensor for structural health monitoring

نویسندگان [English]

  • mostafa adresi 1
  • Mohammad Yekrangnia 2
1 Assistant Professor, Faculty of Civil Engineering, Shahid Rajaee Teacher Training University
2 Assistant Professor, Faculty of Civil Engineering, Shahid Rajaee Teacher Training University
چکیده [English]

The use of self-sensing concrete sensors to estimate the amount of force applied or to estimate damage levels to structures as a new approach has been considered in structural health monitoring studies. In this study, the possibility of using piezoelectric concrete sensors as load or stress sensors to the concrete column has been investigated. The importance of this research in the development of smart infrastructure is based on the response of concrete sensors to conventional sensors. For this purpose, different piezoelectric concrete sensors were made with different percentages of carbon nanotubes and were subjected to dynamic loading and the appropriate sensor with appropriate sensitivity and less turbulence was obtained by adding at least 0.15% carbon nanotubes by weight of cement. In order to simulate the performance of the concrete column under external load until the failure and analysis of its behavior, based on the response of the concrete sensor, a small cubic concrete sensor with dimensions of 5 cm was made and placed in a concrete column. By loading the concrete column until the failure, the output of the sensor was monitored and the behavior of the concrete column was analyzed based on the concrete sensor response. The results showed that the concrete sensor could accurately estimate the final force that can be applied to the column up to failure. The sensor demonstrated that it could differentiate the different phases of the concrete column under the loading up to failure.

کلیدواژه‌ها [English]

  • "concrete"
  • "SHM"
  • "CNT"
  • "piezoelectric concrete sensor"
  • "Sensor"
[1]   F. Azhari and N. Banthia, “A 3D percolation model for conductive fibrous composites: application in cement-based sensors,” J. Mater. Sci., vol. 50, no. 17, pp. 5817–5821, 2015.
[2]   F. J. Baeza, O. Galao, E. Zornoza, and P. Garcés, “Multifunctional cement composites strain and damage sensors applied on reinforced concrete (RC) structural elements,” Materials (Basel)., vol. 6, no. 3, pp. 841–855, 2013.
[3]   S. Sun, X. Yu, and B. Han, “Sensing Mechanism of Self-Monitoring CNT Cementitious Composite,” J. Test. Eval., vol. 42, no. 1, p. 20120302, 2014.
[4]   S. Parveen, S. Rana, and R. Fangueiro, “A Review on Nanomaterial Dispersion, Microstructure, and Mechanical Properties of Carbon Nanotube and Nanofiber Reinforced Cementitious Composites,” J. Nanomater., vol. 2013, pp. 1–19, 2013.
[5]   B. Han, S. Ding, and X. Yu, “Intrinsic self-sensing concrete and structures: A review,” Measurement, vol. 59, pp. 110–128, 2015.
[6]   J. Wilson, Sensor Technology Handbook. Chandler, Arizona, USA: Elsevier Ltd, 2005.
[7]   K. Gopalakrishnan, P. T. Bjorn Birgisson, and  and N. O. A.-O. (Eds.), Nanotechnology in Civil Infrastructure A Paradigm Shift. Springer-Verlag Berlin Heidelberg, 2011.
[8]   M. Adresi, “Concrete pavement prediction life model based on electrical response of concrete - CNTs sensors under fatigue loading,” Politecnico di Torino, 2017.
[9]   P. W. Chen and D. D. L. Chung, “Concrete as a new strain/stress sensor,” Compos. Part B Eng., vol. 27, no. 1, pp. 11–23, 1996.
[10]  H. Xiao, H. Li, and J. Ou, “Strain sensing properties of cement-based sensors embedded at various stress zones in a bending concrete beam,” Sensors Actuators, A Phys., vol. 167, no. 2, pp. 581–587, 2011.
[11]  B. Han and J. Ou, “Embedded piezoresistive cement-based stress/strain sensor,” Sensors Actuators, A Phys., vol. 138, no. 2, pp. 294–298, 2007.
[12]  M. Sun, R. J. Y. Liew, M.-H. Zhang, and W. Li, “Development of cement-based strain sensor for health monitoring of ultra high strength concrete,” Constr. Build. Mater., vol. 65, no. 2014, pp. 630–637, 2014.
[13]  F. Azhari and N. Banthia, “Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing,” Cem. Concr. Compos., vol. 34, no. 7, pp. 866–873, 2012.
[14]  M. Sun, Q. Liu, Z. Li, and Y. Hu, “A study of piezoelectric properties of carbon fiber reinforced concrete and plain cement paste during dynamic loading,” Cem. Concr. Res., vol. 30, no. 10, pp. 1593–1595, 2000.
[15]  S. Wen and D. D. L. Chung, “Self-sensing of flexural damage and strain in carbon fiber reinforced cement and effect of embedded steel reinforcing bars,” Carbon N. Y., vol. 44, no. 8, pp. 1496–1502, 2006.
[16]  O. Galao, F. J. Baeza, E. Zornoza, and P. Garcés, “Strain and damage sensing properties on multifunctional cement composites with CNF admixture,” Cem. Concr. Compos., vol. 46, no. 2014, pp. 90–98, 2014.
[17]  M. Saafi, “Wireless and embedded carbon nanotube networks for damage detection in concrete structures.,” Nanotechnology, vol. 20, no. 39, p. 395502, 2009.
[18]  D.-M. Bontea, D. D. L. Chung, and G. C. Lee, “Damage in carbon fiber-reinforced concrete, monitored by electrical resistance measurement,” Cem. Concr. Res., vol. 30, no. 4, pp. 651–659, 2000.
[19]  S. Wang and D. D. L. Chung, “Self-monitoring of strain and damage by a carbon-carbon composite,” Carbon N. Y., vol. 35, no. 5, pp. 621–630, 1997.
[20]  S. Ding, S. Dong, A. Ashour, and B. Han, “Development of sensing concrete : Principles , properties and its applications,” J. Appl. Phys., vol. 126, no. 241101, 2019.
[21]  B. Wu, X. Huang, and J. Lu, “Biaxial compression in carbon-fiber-reinforced mortar , sensed by electrical resistance measurement,” Cem. Concr. Res., vol. 35, pp. 1430–1434, 2005.
[22]  E. Darvishan, “Low cost health monitoring of cable stayed bridges using synchrosqueezed wavelet transform and nonlinear principal component analysis,” J. Struct. Constr. Eng., vol. 5, no. 4, pp. 193–216, 2019.
[23]  G. Nouri, S. H. Lavasani, and M. Shahrabi, “Developing the application of strain energy spectrum in the health monitoring of steel resistance frame structures,” J. Struct. Constr. Eng., 2019.
[24]  A. Rytter, “Vibrational Based Inspection of Civil Engineering Structures Aalborg: Dept. of Building Technology and Structural Engineering, Aalborg University,” 1993.
[25]  A. D’Alessandro, F. Ubertini, A. L. Materazzi, S. Laflamme, A. Cancelli, and L. Micheli, “Carbon cement-based sensors for dynamic monitoring of structures,” in IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, 2016, pp. 1–4.
[26]  S. Materials, S. Ding, and B. Han, “Structural modal identification and health monitoring of building structures using self-sensing cementitious composites,” Smart Mater. Struct., vol. 29, 2020.
[27]  A. Meoni et al., “An Experimental Study on Static and Dynamic Strain Sensitivity of Embeddable Smart Concrete Sensors Doped with Carbon Nanotubes for SHM of Large Structures,” sensors, vol. 18, no. 3, pp. 1–19, 2018.
[28]  A. Downey, E. Garcia-Macias, A. D’Alessandro, S. Laflamme, R. C.-T. Ubertini, and F. Ubertini, “Continuous and embedded solutions for SHM of concrete structures using changing electrical potential in self-sensing cement-based composites,” in Proceedings Volume 10169, Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure, 2017.
[29]  Y. Wang, Y. Wang, B. Wan, B. Han, G. Cai, and Z. Li, “Properties and mechanisms of self-sensing carbon nanofibers / epoxy composites for structural health monitoring Properties and mechanisms of self-sensing carbon nano fi bers / epoxy composites for structural health monitoring,” Compos. Struct., vol. 200, pp. 669–678, 2018.
[30]  M. Adresi, A. Hassani, A. Khishdari, and M. Zeini, “Determination of optimum Mix Design for Cement Treated Base Containing High Volume of Reclaimed Asphalt Pavement,” Transp. Infrastructures Eng. J., vol. 3, no. 1, pp. 53–68, 2017.
[31]  M. Adresi, A. Hassani, Mohammad reza Soleimani, and A. yazdian Varjani, “Investigation of carbon nanotube and energy levels effects on Self-sensing Concrete Sensor Performance in Dynamic Loading Pattern,” Transp. Infrastructures Eng. J., vol. 2, no. 3, pp. 17–34, 2016.
[32]  M. Adresi, A. Hassani, S. Javadian, and J. Tulliani, “Determining the Surfactant Consistent with Concrete in order to Achieve the Maximum Possible Dispersion of Multiwalled Carbon Nanotubes in Keeping the Plain Concrete Properties,” J. Nanotechnol., vol. 2016, no. Article ID 2864028, pp. 1–10, 2016.
[33]  M. Adresi, A. Hassani, J.-M. Tulliani, G. Lacidogna, and P. Antonaci, “A study on the main factors affecting the performance of self-sensing concrete,” Adv. Cem. Res., vol. 29, no. 5, pp. 216–226, 2017.
[34]  M. Adresi, A. Ahmadi, M. Ahamadi, M. Forsat, and M. Taghipour, “Methodology of Damage Detection and Weight in Motion Performance under Traffic Loading Based on Self-Sensing Concrete,” Transp. engneering, vol. 9, no. 2, pp. 139–154, 2018.