بررسی مشخصات مکانیکی بتن سبک خودتراکم حاوی سرباره مس

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشگاه تربیت دبیر شهید رجایی

2 کارشناس ارشد سازه، دانشگاه شهید رجایی، تهران

3 دانشکده مهندسی عمران، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران

چکیده

در این تحقیق خواص مکانیکی بتن سبک خودتراکم سبز، با جایگزینی سرباره مس به عنوان قسمتی از سیمان بررسی شده است. با توجه به تاثیر مثبت میکروسیلیس در این بتن، به منظور کاهش عیار سیمان در بتن سبک خودتراکم سبز، یک طرح اولیه بدون سرباره مس و میکروسیلیس و 7 طرح مخلوط با 0، 5، 10، 15، 20، 25 و 30 درصد سرباره مس به همراه 10 درصد میکروسیلیس ارائه‌شده است. به منظور بررسی خواص بتن تازه آزمایش‌های جریان اسلامپ، T50، قیف V و حلقه J انجام گرفت. همچنین آزمایش‌های مقاومت فشاری، کششی و خمشی بر روی بتن سخت‌شده در سنین مختلف 7، 28و90 روز انجام شد. در نهایت مشخص گردید که میکروسیلیس کارایی بتن را کاهش و مقاومت‌های فشاری، کششی و خمشی را بهبود می‌بخشد. همچنین سرباره مس کارایی بتن را افزایش داده، خواص خودتراکمی را بهتر می‌کند. همچنین درصد بهینه جایگزینی سرباره مس 15 درصد بود. طرح بهینه خواص خودتراکمی را داشت و وزن مخصوص آن 1871 کیلوگرم بر متر مکعب به دست آمد. همچنین مقاومت فشاری، کششی و خمشی 28 روزه این طرح نسبت به نمونه شاهد حدود 17%، 18% و 11% افزایش داشت. با توجه به فعال بودن و ریز بودن ذرات میکروسیلیس، وجود میکروسیلیس باعث کاهش کارایی بتن شد. همچنین سرباره مس تاثیری بر خلاف میکروسیلیس داشت و باعث افزایش کارایی بتن شد. البته تمامی نمونه‌ها خواص خودتراکمی را داشتند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the mechanical properties of self-compacting lightweight concrete containing copper slag

نویسندگان [English]

  • Moosa Mazloom 1
  • Mohammad Akbari Jamkarani 2
  • Farid Afzali 3
1 Shahid Rajaee University
2 M.Sc. in Structural Engineering, Shahid Rajaee UniversityT Tehran
3 Master of Science in Structural Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran
چکیده [English]

In this study, the mechanical properties of self-compacting lightweight green concrete were investigated by replacing copper slag as part of cement. Due to the positive effect of microsilica in this concrete, in order to reduce the grade of cement in self-compacting lightweight green concrete, a basic design without copper and microsilica slag and 7 mixed designs with 0, 5, 10, 15, 20, 25 and 30% copper slag It was provided with 10% microsilica. In order to study the properties of fresh concrete, experiments were performed on slump flow, T50, V funnel and J-ring. Also, compressive, tensile and bending strength tests were performed on hardened concrete at different ages of 7, 28 and 90 days. . Finally, microsilica has been shown to reduce concrete performance and improve compressive, tensile and flexural strengths. Copper slag also increases the performance of concrete and improves its self-compacting properties, but with increasing copper slag, the specific gravity of concrete increases. Also, the optimal percentage of copper slag replacement was 15%. The optimal mix design, with its self-compacting and lightweight properties, weighed 1871 kg / m3. Also, the 28-day compressive, tensile and flexural strengths of this mix increased by about 17%, 18% and 11% compared to the control mix.

کلیدواژه‌ها [English]

  • Lightweight concrete
  • Self-compacting concrete
  • Green concrete
  • Copper slag
  • Self-compacting lightweight concrete
[1] Ahsan, M. B., & Hossain, Z. (2018). Supplemental use of rice husk ash (RHA) as a cementitious material in concrete industry. Construction and Building Materials, 178, 1-9.
[2] Nunes, S., Figueiras, H., Oliveira, P. M., Coutinho, J. S., & Figueiras, J. (2006). A methodology to assess robustness of SCC mixtures. Cement and Concrete Research, 36(12), 2115-2122.
[3] Fapohunda, C., Akinbile, B., & Shittu, A. (2017). Structure and properties of mortar and concrete with rice husk ash as partial replacement of ordinary Portland cement–A review. International Journal of Sustainable Built Environment, 6(2), 675-692.
[4] Rehman, M. S. U., Umer, M. A., Rashid, N., Kim, I., & Han, J. I. (2013). Sono-assisted sulfuric acid process for economical recovery of fermentable sugars and mesoporous pure silica from rice straw. Industrial crops and products, 49, 705-711.
[5] Awang, H., Atan, M. N., Abidin, N. Z., & Yusof, N. (2016). Cost-Reduction of Self-Compacting Concrete Incorporating Raw Rice Husk Ash. Journal of Engineering Science and Technology, 11(1), 096-108.
[6] Yuan, Q., Pump, J., & Conrad, R. (2014). Straw application in paddy soil enhances methane production also from other carbon sources. Biogeosciences, 11(2), 237.
[7] Schmidhuber, J., & Tubiello, F. N. (2007). Global food security under climate change. Proceedings of the National Academy of Sciences, 104(50), 19703-19708.
[8] Ahmad, S., & Umar, A. (2018). Rheological and mechanical properties of self-compacting concrete with glass and polyvinyl alcohol fibres. Journal of Building Engineering, 17, 65-74.
[9] Mazloom, M., Homayooni, S. M., & Miri, S. M. (2018). Effect of rock flour type on rheology and strength of self-compacting lightweight concrete. Computers and Concrete, 21(2), 199-207.
 [10] Mazloom, M., Allahabadi, A., & Karamloo, M. (2017). Effect of silica fume and polyepoxide-based polymer on electrical resistivity, mechanical properties, and ultrasonic response of SCLC. Advances in concrete construction, 5(6), 587.
[11] Mazloom, M., & Hatami, H. (2016). The behavior of self-compacting light weight concrete produced by magnetic water. International Journal of Civil and Environmental Engineering, 9(12), 1683-1687.
[12] Mazloom, M., & Mahboubi, F. (2017). Evaluating the settlement of lightweight coarse aggregate in self-compacting lightweight concrete. Computers and Concrete, 19(2), 203-210.
[13] Salehi, H., & Mazloom, M. (2018). Experimental and numerical studies of crack propagation in self-compacting lightweight concrete. Modares Mechanical Engineering, 18(6), 144-155.
[14] Topçu, İ. B., & Uygunoğlu, T. (2010). Effect of aggregate type on properties of hardened self-consolidating lightweight concrete (SCLC). Construction and Building Materials, 24(7), 1286-1295.
 [15] Hwang, C. L., & Tran, V. A. (2015). A study of the properties of foamed lightweight aggregate for self-consolidating concrete. Construction and Building Materials, 87, 78-85.
[16] Pachideh, G., & Gholhaki, M., & Ketabdari, H. (2020). Effect of pozzolanic wastes on mechanical properties, durability and microstructure of the cementitious mortars. Journal of Building Engineering, 29, 101178.
[17] Wu, Z., Zhang, Y., Zheng, J., & Ding, Y. (2009). An experimental study on the workability of self-compacting lightweight concrete. Construction and Building Materials, 23(5), 2087-2092.
[18] Gesoğlu, M., Güneyisi, E., Kocabağ, M. E., Bayram, V., & Mermerdaş, K. (2012). Fresh and hardened characteristics of self-compacting concretes made with combined use of marble powder, limestone filler, and fly ash. Construction and Building Materials, 37, 160-170.
[19] Topçu, İ. B., & Uygunoğlu, T. (2010). Effect of aggregate type on properties of hardened self-consolidating lightweight concrete (SCLC). Construction and Building Materials, 24(7), 1286-1295.
[20] Mazloom, M., Ramezanianpour, A. A., & Brooks, J. J. (2004). Effect of silica fume on mechanical properties of high-strength concrete. Cement and Concrete Composites, 26(4), 347-357.
[21] Mazloom, M., & Ranjbar, A. (2010). Relation between the workability and strength of self-compacting concrete. 35th Our World in Concrete and Structures (OWICs)–2010, http://www. Cipremier.com/page.php, 162.
[22] Mazloom, M., Allahabadi, A., & Karamloo, M. (2017). Effect of silica fume and polyepoxide-based polymer on electrical resistivity, mechanical properties, and ultrasonic response of SCLC. Advances in concrete construction, 5(6), 587.
[23] Naniz, O. A., & Mazloom, M. (2018). Effects of colloidal nano-silica on fresh and hardened properties of self-compacting lightweight concrete. Journal of Building Engineering, 20, 400-410.
[24] Mazloom, M., & Salehi, H. (2018). The relationship between fracture toughness and compressive strength of self-compacting lightweight concrete. In IOP Conference Series: Materials Science and Engineering (Vol. 431, No. 6, p. 062007). IOP Publishing.
[25] Taeb, A., & Faghihi, S. (2002). Utilization of copper slag in the cement industry. ZKG international, 55(4), 98-100.
[26] Mazzoli, A., Monosi, S., & Plescia, E. S. (2015). Evaluation of the early-age-shrinkage of Fiber Reinforced Concrete (FRC) using image analysis methods. Construction and Building Materials, 101, 596-601.
[27] González-Ortega, M. A., Cavalaro, S. H. P., de Sensale, G. R., & Aguado, A. (2019). Durability of concrete with electric arc furnace slag aggregate. Construction and Building Materials, 217, 543-556.
[28] Wang, Z., Zhang, T., & Zhou, L. (2016). Investigation on electromagnetic and microwave absorption properties of copper slag-filled cement mortar. Cement and Concrete Composites, 74, 174-181.
[29] Feng, Y., Yang, Q., Chen, Q., Kero, J., Andersson, A., Ahmed, H., & Samuelsson, C. (2019). Characterization and evaluation of the pozzolanic activity of granulated copper slag modified with CaO. Journal of Cleaner Production, 232, 1112-1120.
[30] EFNARC. 2002. Specifications and Guidelines for Self-Compacting Concrete. ISBN0 953973344.
[31] ASTM C330. 2014. Standard Specification for Lightweight Aggregates for Structural
Concrete. ASTM International.
[32] ACI 237. 2007. Self-consolidating concrete. American Concrete Institute.
[33] ACI 213. 2014. Guide for Structural Lightweight-Aggregate Concrete. American Concrete Institute.
[34] ASTM C1621. (2006). Standard Test Method for Passing Ability of Self-Consolidating Concrete by J-Ring. ASTM International.
[35] BSI, BS 1881-124: 1988: Testing concrete–Part 124: Methods for analysis of hardened concrete, in, BSI London, UK, 1988.
[36] ASTM C1609/M-05. 2006. Standard Test Method for Flexural Performace of Fiber Reinforced Concrete (using Beam wih Third-point loading). ASTM International.
[37] Massana, J., Reyes, E., Bernal, J., León, N., & Sánchez-Espinosa, E. (2018). Influence of nano-and micro-silica additions on the durability of a high-performance self-compacting concrete. Construction and Building Materials, 165 93-103.
[38] Afshoon, I., & Sharifi, Y. (2020). Utilization of micro copper slag in SCC subjected to high temperature. Journal of Building Engineering, 29.
[39] Fadaee, M., Mirhosseini, R., Tabatabaei, R., & Fadaee, M.J. (2015). Investigation on using copper slag as part of cementitious materials in self-compacting concrete. Asian Journal of Civil Engineering, 16(3) 368-381.
[40] Pachideh, G., & Gholhaki, M. (2020). Assessment of post-heat behavior of cement mortar incorporating silica fume and granulated blast-furnace slag. Journal of Structural Fire Engineering.
[41] Pachideh, G., Gholhaki, M., & Moshtagh, A. (2019). On the post-heat performance of cement mortar containing silica fume or Granulated Blast-Furnace Slag. Journal of Building Engineering, 24, 100757.