استفاده از الگوریتم‌های بهینه‌سازی ازدحام ذرات و شبیه سازی تبرید در برآورد ضریب رفتار سازه‌ فولادی با مهاربندی واگرا تحت زلزله‌های حوزه نزدیک گسل پالسگونه

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه مهندسی عمران، ,واحد اهواز، دانشگاه آزاداسلامی، اهواز، ایران

2 گروه مهندسی عمران، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران موسسه آموزش عالی جهاد دانشگاهی خوزستان، اهواز، ایران

3 گروه مهندسی عمران، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

چکیده

ضریب رفتار سازه، ضریبی است که عملکرد غیر ارتجاعی سازه را دربرداشته و نشانگر مقاومت پنهان سازه در مرحله غیر ارتجاعی است. این ضریب، در استانداردهای لرزه‌ای مانند استاندارد 2800، صرفا به نوع سیستم مقاوم جانبی وابسته و با یک عدد ثابت معرفی شده است. این درحالی است که بین ضریب رفتار، شکل‌پذیری (سطح عملکرد)، هندسه مدل و نوع زلزله (اعم از دور و نزدیک) رابطه وجود دارد. ارائه یک رابطه بین مشخصات هندسی سازه، سطح عملکرد طراحی و ضریب رفتار در قاب های فولادی واگرا تحت اثر زلزله های نزدیک گسل، هدف اصلی مقاله حاضر است. بدین منظور، در ابتدا یک بانک داده‌ی وسیع متشکل از 12960 داده با تنوع 3، 6، 9، 12، 15 و 20 طبقه، 3 تیپ سختی ستون و 3 درجه لاغری مهاربندی تولید و طراحی شده و در برابر 20 زلزله نزدیک گسل دارای اثرات جهت پذیری پیش‌رونده برای 4 سطح عملکردی مختلف تحلیل شدند. جهت تولید رابطه‌ی پیشنهادی از دو الگوریتم قدرتمند ازدحام ذرات و شبیه‌سازی تبرید بهره‌گیری شده است. بدین منظور 6769 داده در آموزش الگوریتم‌ها استفاده شده است. جهت اعتبارسنجی روابط پیشنهادی، 2257 داده آزمون، جهت محاسبه میانگین مربعات خطای رابطه ارایه شده، برای هر دو الگوریتم مورد استفاده قرار گرفت. همچنین داده های غیر همگرا در راستای تولید روابط دقیق تر حذف گردید. نتایج حاصل از بررسی همبستگی الگوریتم‌ها، وجود دقت بیشتر در رابطه حاصل از الگوریتم ازدحام ذرات را تایید می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The use of PSO and SA Optimization Algorithms in Estimating the Behavior factor of EBFs under Near-fault Pulse-type Earthquakes

نویسندگان [English]

  • Seyed Abdonnabi Razavi 1
  • Navid Siahpolo 2
  • Mehdi Mahdavi Adeli 3
1 Department of Civil Engineering,, Ahvaz Branch, Islamic Azad University, , Ahvaz, Iran
2 Department of Civil Engineering,, Ahvaz Branch, Islamic Azad University, , Ahvaz, Iran Department of Civil Engineering, Institute for High Education ACECR, Ahvaz, Iran
3 Department of Civil Engineering,, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
چکیده [English]

The most important feature of the behavior factor is that it allows the structural designer, to be able to evaluate the structural seismic demand, using an elastic analysis, based on force-based principles quickly. In seismic codes such as the 2800Standard, this coefficient is merely dependent on the type of lateral resistance system and is introduced with a fixed number. However, there is a relationship between the behavior factor, ductility (performance level), structural geometric properties, and type of earthquake (near and far). The main purpose of this paper is to establish an accurate intelligent model related to the geometrical characteristics of the structure, performance level and the behavior factor in eccentrically steel frames, under earthquakes near-fault. For this purpose, genetic algorithm is used. Initially a wide database consisting of 12960 data with 3-, 6-, 9-, 12-, 15- and 20- stories, 3 column stiffness types, and 3 brace slenderness types were designed, and analyzed under 20 pulse-type near-fault earthquakes for 4 different performance levels. Two powerful optimization algorithms have been used to generate the proposed relationship. To generate the proposed correlation, 6769 training data were used in the form of PSO and SA algorithms. To validate the proposed correlation, 2257 test data were used to calculate the mean squared error for both algorithms. The results indicate that there is more accuracy in the relation of the PSO algorithm.

کلیدواژه‌ها [English]

  • Particle Swarm Optimization (PSO)
  • Simulated Annealing (SA)
  • behavior factor
  • Eccentric braced frame
  • Pulse-type near-fault earthquake
[1]  B. Standard, "Eurocode 8: Design of structures for earthquake resistance," Part, vol. 1, pp. 1998-1, 2005.
[2]  J. Hummel and W. Seim, "Assessment of dynamic characteristics of multi-storey timber buildings," in Proceedings of the 14th World Conference on Timber Engineering, 2016.
[3]  K. Shimazaki and M. A. Sozen, Seismic drift of reinforced concrete structures. Hazama-gumi, 1984.
[4]  A. Lepage, "A method for drift-control in earthquake-resistant design of RC building structures," University of Illinois at Urbana-Champaign, 1997.
[5]  A. Gupta and H. Krawinkler, "Behavior of ductile SMRFs at various seismic hazard levels," Journal of Structural Engineering, vol. 126, no. 1, pp. 98-107, 2000.
[6]  T. L. Karavasilis, N. Bazeos, and D. Beskos, "Estimation of seismic inelastic deformation demands in plane steel MRF with vertical mass irregularities," Engineering structures, vol. 30, no. 11, pp. 3265-3275, 2008.
[7]  T. L. Karavasilis, N. Makris, N. Bazeos, and D. E. Beskos, "Dimensional response analysis of multistory regular steel MRF subjected to pulselike earthquake ground motions," Journal of structural engineering, vol. 136, no. 8, pp. 921-932, 2010.
[8]  R. A. Medina and H. Krawinkler, Seismic demands for nondeteriorating frame structures and their dependence on ground motions. Pacific Earthquake Engineering Research Center, 2004.
[9]  R. A. Medina and H. Krawinkler, "Evaluation of drift demands for the seismic performance assessment of frames," Journal of Structural Engineering, vol. 131, no. 7, pp. 1003-1013, 2005.
[10]        C. A. Castiglioni and A. Zambrano, "Determination of the behaviour factor of steel moment-resisting (MR) frames by a damage accumulation approach," Journal of constructional steel research, vol. 66, no. 5, pp. 723-735, 2010.
[11]        A. T. Council, Improvement of nonlinear static seismic analysis procedures. FEMA Region II, 2005.
[12]        P. R. Santa-Ana and E. Miranda, "Strength reduction factors for multi-degree-of-freedom systems," in Proceedings of the 12th world conference on Earthquake Engineering, 2000, vol. 1446: Auckland, New Zealand.
[13]        H. Krawinkler and M. Rahnama, "Effects of soft soils on design spectra," in 10th World Conference on Earthquake Engineering, 1992, vol. 10, pp. 5841-5846.
[14]        J. F. Hall, T. H. Heaton, M. W. Halling, and D. J. Wald, "Near-source ground motion and its effects on flexible buildings," Earthquake spectra, vol. 11, no. 4, pp. 569-605, 1995.
[15]        H. Krawinkler, J. Anderson, V. Bertero, W. Holmes, and C. Theil Jr, "Steel buildings," Earthquake Spectra, vol. 12, no. S1, pp. 25-47, 1996.
[16]        N. Makris and C. J. Black, "Dimensional analysis of bilinear oscillators under pulse-type excitations," Journal of Engineering Mechanics, vol. 130, no. 9, pp. 1019-1031, 2004.
[17]        M. Gerami and D. Abdollahzadeh, "Local and global effects of forward directivity," Građevinar, vol. 65, no. 11., pp. 971-985, 2013.
[18]        A. Mashayekhi, M. Gerami, and N. Siahpolo, "Assessment of Higher Modes Effects on Steel Moment Resisting Structures under Near-Fault Earthquakes with Forward Directivity Effect Along Strike-Parallel and Strike-Normal Components," International Journal of Steel Structures, vol. 19, no. 5, pp. 1543-1559, 2019.
[19]        L. Li, Z. Huang, and F. Liu, "A heuristic particle swarm optimization method for truss structures with discrete variables," Computers & Structures, vol. 87, no. 7-8, pp. 435-443, 2009.
[20]        E. Doğan and M. P. Saka, "Optimum design of unbraced steel frames to LRFD–AISC using particle swarm optimization," Advances in Engineering Software, vol. 46, no. 1, pp. 27-34, 2012.
[21]        S. Chatterjee, S. Sarkar, S. Hore, N. Dey, A. S. Ashour, and V. E. Balas, "Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings," Neural Computing and Applications, vol. 28, no. 8, pp. 2005-2016, 2017.
[22]        L. Lamberti, "An efficient simulated annealing algorithm for design optimization of truss structures," Computers & Structures, vol. 86, no. 19-20, pp. 1936-1953, 2008.
[23]        C. Tort, S. Şahin, and O. Hasançebi, "Optimum design of steel lattice transmission line towers using simulated annealing and PLS-TOWER," Computers & Structures, vol. 179, pp. 75-94, 2017.
[24]        C. Millan-Paramo and J. E. Abdalla Filho, "Modified simulated annealing algorithm for optimal design of steel structures," Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, vol. 35, no. 1, 2019.
[25]        F. Logic, "Foundations of fuzzy logic and semantic web languages," 2014.
[26]        J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proceedings of ICNN'95-International Conference on Neural Networks, 1995, vol. 4: IEEE, pp. 1942-1948.
[27]        Y. Shi and R. Eberhart, "A modified particle swarm optimizer," in 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No. 98TH8360), 1998: IEEE, pp. 69-73.
[28]        I. C. Trelea, "The particle swarm optimization algorithm: convergence analysis and parameter selection," Information processing letters, vol. 85, no. 6, pp. 317-325, 2003.
[29]        Q. Bai, "Analysis of particle swarm optimization algorithm," Computer and information science, vol. 3, no. 1, p. 180, 2010.
[30]        P. Fourie and A. A. Groenwold, "The particle swarm optimization algorithm in size and shape optimization," Structural and Multidisciplinary Optimization, vol. 23, no. 4, pp. 259-267, 2002.
[31]        S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by simulated annealing," science, vol. 220, no. 4598, pp. 671-680, 1983.
[32]        K. A. Dowsland and J. Thompson, "Simulated annealing," Handbook of natural computing, pp. 1623-1655, 2012.
[33]        B. Suman and P. Kumar, "A survey of simulated annealing as a tool for single and multiobjective optimization," Journal of the operational research society, vol. 57, no. 10, pp. 1143-1160, 2006.
[34]        P. J. Van Laarhoven and E. H. Aarts, "Simulated annealing," in Simulated annealing: Theory and applications: Springer, 1987, pp. 7-15.
[35]        آیین نامه طراحی ساختمان ها در برابر زلزله - استاندارد 2800 ویرایش 4, م. ت. س. و. مسکن, 1393.
[36]        AISC-360-05, Structural design guide to AISC specifications for buildings, 0442269048, P. F. Rice and E. S. Hoffman, 2005.
[37]        مبحث دهم مقررات ملی ساختمان، طرح و اجرای ساختمان های فولادی, د. ا. م. م. س. و. ر. و. شهرسازی, 1392.
[38]        T. L. Karavasilis, N. Bazeos, and D. E. Beskos, "Estimation of seismic drift and ductility demands in planar regular X‐braced steel frames," Earthquake Engineering & Structural Dynamics, vol. 36, no. 15, pp. 2273-2289, 2007.
[39]        A. Fakhraddini, S. Hamed, and M. J. Fadaee, "Peak displacement patterns for the performance-based seismic design of steel eccentrically braced frames," Earthquake Engineering and Engineering Vibration, vol. 18, no. 2, pp. 379-393, 2019.
[40]        M. Bosco, E. M. Marino, and P. P. Rossi, "Modelling of steel link beams of short, intermediate or long length," Engineering structures, vol. 84, pp. 406-418, 2015.
[41]        F. McKenna, "OpenSees: a framework for earthquake engineering simulation," Computing in Science & Engineering, vol. 13, no. 4, pp. 58-66, 2011.
[42]        R. Pekelnicky, S. D. Engineers, S. Chris Poland, and N. D. Engineers, "ASCE 41-13: Seismic Evaluation and Retrofit Rehabilitation of Existing Buildings," Proceedings of the SEAOC, 2012.
[43]        A. Tzimas, T. Karavasilis, N. Bazeos, and D. Beskos, "Extension of the hybrid force/displacement (HFD) seismic design method to 3D steel moment-resisting frame buildings," Engineering Structures, vol. 147, pp. 486-504, 2017.
[44]        F. De Luca, I. Iervolino, and E. Cosenza, "Un-scaled, scaled, adjusted and artificial spectral matching accelerograms: displacement-and energy-based assessment," Proceedings of XIII ANIDIS,“L’ingegneria Sismica in Italia”, Bologna, Italy, 2009.
[45]        J. Hancock, "The influence of duration and the selection and scaling of accelerograms in engineering design and assessment," Imperial College London (University of London), 2006.
[46]        J. W. Baker, "Quantitative classification of near-fault ground motions using wavelet analysis," Bulletin of the Seismological Society of America, vol. 97, no. 5, pp. 1486-1501, 2007.
[47]        M. Bosco and P. Rossi, "Seismic behaviour of eccentrically braced frames," Engineering Structures, vol. 31, no. 3, pp. 664-674, 2009.
[48]        A. Kuşyılmaz and C. Topkaya, "Design overstrength of steel eccentrically braced frames," International Journal of Steel Structures, vol. 13, no. 3, pp. 529-545, 2013.
[49]        P. Rossi and A. Lombardo, "Influence of the link overstrength factor on the seismic behaviour of eccentrically braced frames," Journal of Constructional Steel Research, vol. 63, no. 11, pp. 1529-1545, 2007.
[50]        A. Committee, "Specification for structural steel buildings (ANSI/AISC 360-10)," American Institute of Steel Construction, Chicago-Illinois, 2010.