بررسی نمود فرآیند خرابی پیشرونده در سازه بلند مرتبه قاب خمشی مدولار با پیکربندی سلول‌های صلب دسته شده تحت زوایای تابش رکوردهای حوزه نزدیک

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد مهندسی سازه، دانشگاه خوارزمی، تهران،>

2 دانش آموخته کارشناسی ارشد مهندسی زلزله، دانشگاه خوارزمی، تهران

3 هیات علمی (استادیار)، دانشکده مهندسی ، گروه عمران، دانشگاه خوارزمی، تهران

4 دانشیار، دانشکده فنی و مهندسی، دانشگاه خوارزمی، تهران، ایران

چکیده

یک سازه در طول عمر مفید خود با تهدیدهای بسیاری رو‌برو است. این تهدیدها می‌توانند ناشی از پدیده‌های طبیعی و یا عوامل انسانی باشند. پدیده خرابی پیشرونده، به هر صورت برخاسته و متاثر از عوامل فوق می‌تواند بر پایداری سازه‌ها تاثیرگذار باشد. بدین ترتیب، مشخصات رفتار سازه تحت شرایط ایجاد آسیب، خرابی و حذف اعضای بحرانی می‌تواند به عنوان رویکردی در جهت تخمین پتانسیل خرابی پیشرونده و نیز ارزیابی پایداری اسکلت مقاوم، مورد بررسی قرار گیرد. بارگذاری دینامیکی ناشی از زلزله نیز مانند بارهای ایجاد شده توسط انفجار، ضربه و آتش‌سوزی به عنوان عامل ایجاد خرابی پیشرونده محسوب می‌شود.
سازمان علمی این پژوهش دربرگیرنده مطالعه رفتار غیرخطی یک سازه فولادی20 طبقه قاب خمشی دسته شده، با اعمال زوایای تابش رکوردهای حوزه نزدیک و تاثیر آنها بر پایداری سازه‌ها تحت اثرات خرابی پیشرونده است. اسکلت مقاوم سازه مطالعاتی بر اساس ضوابط آیین‌نامه طرح لرزه‌ای ایران (استاندارد 2800- ویرایش چهارم) و نیز مباحث ششم و دهم مقررات ملی ساختمان، طراحی شده‌ است. نتایج این پژوهش بر اساس انجام تحلیل‌های دینامیکی تاریخچه زمانی غیرخطی بدست آمده است. به منظور بررسی این فرآیند، چهار زوایای تابش به همراه سه موقعیت حذف المان تحت مجموعه رکوردهای سه مولفه‌ای انتخابی اعمال شده است. نتایج این پژوهش نشان می‌دهد که پارامترهای پاسخ در سازه با حذف ستون گوشه نسبت به دو حالت حذف ستون در ارتفاع و نیز در دهانه میانی قاب بیرونی، دارای دامنه بزرگتری است. این موضوع نیز با افزایش زاویه تابش از صفر به °45 دچار تغییرات چشمگیری نشده است. شایان ذکر است که سازه مطالعاتی تحت حذف المان و با اعمال رکوردهای نیرومند حوزه نزدیک، دارای عملکرد لرزه‌ای مناسب بوده و دامنه رفتاری از حدود ایمنی جانی فراتر نرفته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Progressive Collapse Effects in Modular Bundled Tube Frames under Near-Field Earthquakes imposed through Incidence Angles

نویسندگان [English]

  • Erfan Alghasi 1
  • Mahshad Jamdar 2
  • Afshin Meshkat-Dini 3
  • Jafar Keyvani Ghamsari 4
1 MSc Graduate
2 MSc Graduate
3 Professor of Structural-Earthquake Engineering - Kharazmi University - Tehran - IRAN
4 Associate Professor, Department of Civil Engineering, Kharazmi University, Tehran, Iran
چکیده [English]

In this study, the nonlinear behavior of a studied 20story steel bundled tube frame structure is evaluated under applying the assumed incidence angles to the imposed directions of near-field records. Additionally, the related effects on the stability of the studied structure subjected to the probable forming of progressive collapse, have been studied too. The results of this research were obtained based on conducting nonlinear dynamic time history analyses. Four assumed incidence angle case studies were considered to an ensemble of three-component earthquake records. Moreover, three-member removal situations were also assumed for the selective column elements of the studied structure subjected to all chosen ground motions.
The results of this study show that the structural response parameters have a relatively larger amplitude under removing of the corner column at the first story, than the other two cases of column removal which to be assumed at 10th story and also for the middle column of the outer frame. Furthermore, the structural responses did not change significantly with the increase of the incidence angle from 0° to 45°. The obtained results show that the formation of plastic hinges and inelastic zones in the structure would indicate high deformation demands at the middle stories and also the induced demand variation decreases along upward of the height. Additionally, removing of the corner column would result in the formation of more plastic hinges, which cause relatively greater structural damages and gradually reduces the stability of the studied structure. It is worth noting that the structural response parameters under each element removal and subjected to strong near-field records, remains in a relatively stable domain. Furthermore, the variation of response parameters did not exceed the life safety limit.

کلیدواژه‌ها [English]

  • Seismic Response
  • Bundled Tube Structure
  • Near-Field Record
  • Progressive Collapse
  • Incidence Angle
[1]. Kim, J., & Park, J., (2008). Design of steel moment frames considering progressive collapse. Steel and Composite Structures, 8(1), 85-98.
[2]. El-Tawil, S., & Li, H.H., (2013). Progressive collapse research: Current state and future needs. In Advanced Materials Research (Vol. 639, pp. 3-12). Trans Tech Publications.
[3]. Kim, J., Park, J.H., & Lee, T.H., (2011). Sensitivity analysis of steel buildings subjected to column loss. Engineering Structures, 33(2), 421-432.
[4]. Gurley, C., (2008). Progressive collapse and earthquake resistance. Practice Periodical on Structural Design and Construction, 13(1), 19-23.
[5]. Unified Facilities Criteria (UFC). 2005. Design of Buildings to Resist Progressive Collapse, (UFC4-023-03). Department of Defense
[6]. US General Services Administration (US GSA). 2003. Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects. GSA.
[7]. Kim, J., & An, D., (2009). Evaluation of progressive collapse potential of steel moment frames considering catenary action. The Structural Design of Tall and Special Buildings, 18(4), 455-465.
[8]. Fu, F., (2009). Progressive collapse analysis of high-rise building with 3d finite element modeling method. Constructional Steel Research, 65(6), 1269-1278.
[9]. Fu, F., (2010). 3D nonlinear dynamic progressive collapse analysis of multi-storey steel composite frame buildings (parametric study). Engineering Structures, 32(12), 3974-3980.
[10]. Khandelwal, K., El-Tawil, S., & Sadek, F., (2009). Progressive collapse analysis of seismically designed steel braced frames. Constructional Steel Research, 65(3), 699-708.
[11]. Liu, M., (2011). Progressive collapse design of seismic steel frames using structural optimization. Constructional Steel Research, 67(3), 322-332.
[12]. Kim, J., & Kong, J., (2013). Progressive collapse behavior of rotor-type diagrid buildings. The Structural Design of Tall and Special Buildings, 22(16), 1199-1214.
[13]. Kim, S.W., Lee, C.H., & Lee, K.K., (2014). Effects of composite floor slab on progressive collapse resistance of steel moment frames. Journal of the Architectural Institute of Korea Structure and Construction, 30(2), 3-10.
[14]. PourAsil, M.B., Mohammadi, Y., & Gholizad, A., (2017). A proposed procedure for progressive collapse analysis of common steel building structures to blast loading. KSCE Journal of Civil Engineering, 21(6), 2186-2194.
[15]. Avanaki, M.J., & Estekanchi, H.E., (2012). Collapse analysis by endurance time method. International Journal of Optimization in Civil Engineering, 2(2), 287-299.
[16]. Gioncu, V., & Mazzolani, F.M., (2006). Influence of earthquake types on the design of seismic resistant steel structures I, challenges for new design approaches. STESSA Conference, Yokohama, Japan.
[17]. Mehrain, M., & Naeim, F., (2003). Exact three dimensional linear and nonlinear seismic analysis of structures with two-dimensional models. Earthquake Spectra, 19(4), 897-912.
[18]. Haj Najafi, L., & Tehranizadeh, M., (2013). Evaluation of seismic behavior for moment frames and eccentrically braced frames due to near-field ground motions, Asian Journal of Civil Engineering (BHRC), 14(6), 809-830.
[19]. Hayden, C.P., Bray, J.D., & Abrahamson, N.A., (2014). Selection of near-fault pulse motions. Geotechnical and Geoenvironmental Engineering, 140(7), DOI: 10.1061/(ASCE)GT.1943-5606.0001129.
[20]. Gioncu, V., Mosoarca, M., & Anastasiadis, A., (2014). Local ductility of steel elements under near-field earthquake loading. Journal of Constructional Steel Research, 101, 33-52.
[21]. Iervolino, I., Manfredi, G., & Cosenza, E. (2006). Ground motion duration effects on nonlinear seismic response. Earthquake Engineering and Structural Dynamics, 35(1), 21-38.
[22]. Stafford Smith, B., & Coull, A. (1991). Tall building structures: analysis and design.
[23]. Iranian Standard No. 2800. (2014). Iranian code of practice for seismic resistant design of buildings, fourth edition, Road, Housing and Urban Development Research Center, Tehran, Iran.
[24]. Iranian National Building Code. (2014). Steel Structures - Issue 10, Tehran, Iran: Bureau of National Building Regulations.
[25]. Iranian National Building Code. (2014). Design Loads for Buildings - Issue 6, Tehran, Iran: Bureau of National Building Regulations.
[26]. Alghasi, E. (2019). "Evaluation of dynamic instability of middle structures of steel modular moment frames under Impact loads caused by an earthquake with progressive collapse approach", MSc. Thesis, Kharazmi University, Faculty of Engineering, Tehran, Iran.
[27]. FEMA 356, Federal Emergency Management Agency, 1998.
[28]. FEMA 440, Improvement of Nonlinear Static Analysis Procedures, Applied Technology Council (ATC-55 Project), 2005.
[29]. PEER Ground Motion Database, http://peer.berkeley.edu.
[30]. SAP2000, Integrated Structural Analysis and Design Software. Berkeley, CA, 2000.
[31]. CSI (2013). PERFORM-3D. Version 5.0.1. Computers and Structures, Inc. Berkeley, CA.
[32]. Fu, F., (2012). Response of a multi-storey steel composite building with concentric bracing under consecutive column removal scenarios. Constructional Steel Research, 70, 115-126.
[33]. Wang, Z., Carpenter, N.S., Zhang, L., Woolery, E.W., (2017). “Assessing potential ground motion hazards from induced earthquakes”, Natural Hazards Review (ASCE), 18(4), DOI: 10.1061/(ASCE)NH.1527-6996.0000264.  
[34]. Bradley, B.A., Pettinga D., Baker J.W., Fraser J., (2017). “Guidance on the utilization of earthquake-induced ground motion simulations in engineering practice”, Earthquake Spectra (EERI), 33(3), DOI: https://doi.org/10.1193/120216EQS219EP    
[35]. Whitney, R., (2019). “Quantifying near fault pulses using generalized Morse wavelets”, Journal of Seismology (Springer), DOI: https://doi.org/10.1007/ s10950-019-09858-7 
[36]. Stephen, D., Lam, D., Forth, J., Ye, J., Tsavdaridis, K.D., (2019). “An evaluation of modelling approaches and column removal time on progressive collapse of building”, Constructional Steel Research (Elsevier), 153, 243-253, DOI: https://doi.org/10.1016/j.jcsr.2018.07.019
[37]. Wang, F., Yang, J., Pan, Z., (2020). “Progressive collapse behaviour of steel framed substructures with various beam-column connections, Engineering Failure Analysis (Elsevier), DOI: https://doi.org/10.1016/j.engfailanal.2020.104399  
[38]. Vaseghi Amiri, J., Davoodi, M.R., Sahafi, A., (2008) “Simulation of near-fault ground motions with equivalent pulses and compare their effects on MRF structures”, 14th World Conference on Earthquake Engineering, Beijing, China.
[39].Guan, X., Burton, H., Sabol, T. (2020). Python-based computational platform to automate seismic design, nonlinear structural model construction and analysis of steel moment resisting frames. Engineering Structures, 224. https://doi.org/10.1016/j.engstruct.2020.111199   
[40]. Kalkan, E., & Kunnath, S.K., (2006). “Effects of fling step and forward directivity on seismic response of buildings”, Earthquake Spectra, 22(2), 367-390.