کنترل پیش بین مبتنی بر فیلتر کالمن و ملاحظه اثر اشباع عملگر در کنترل فعال ساختمان نه طبقه مبنای SAC

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی سازه، گروه مهندسی عمران، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران

2 استادیار، گروه مهندسی عمران، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران

3 گروه سازه- دانشکده عمران- دانشگاه تبریز

چکیده

کنترل پیش‌بین یک الگوریتم کنترل بهینه‌ای می‌باشد که نیروی کنترلی به دست آمده از این روش با حل یک مسئله بهینه‌یابی در حضور محدودیت‌های سخت و نرم حاصل می‌شود. به دلیل وجود عدم‌قطعیت در معادله فرآیند و همچنین ساختار حسگرهای حالت و از طرفی وجود محدودیت‌هایی در ظرفیت عملگرهای کنترلی نیاز به ایجاد یک فرآیند کنترلی می‌باشد که همه این شرایط و محدودیت‌ها را به نحو مطلوبی در خود بگنجاند. به همین جهت، در این پژوهش، یک روش کنترل پیش‌بین گسسته مبتنی بر فیلتر کالمن و ملاحظه اثر اشباع عملگر ارائه می‌شود. فیلتر کالمن به عنوان یک تخمین زننده حالت قادر است، حالت‌های نزدیک‌تر به واقعیت را ارائه نماید. از سویی اعمال محدودیت‌های عملکردی در فرآیند کنترل باعث می‌شود تا اشباع عملگرها نیز به صورت بهینه ملاحظه گردند. در تحقیق حاضر، برای بررسی کارایی روش کنترلی پیشنهادی در کاهش پاسخ‌های لرزه‌ای از یک سازه نه طبقه فولادی مبنا (SAC) تحت بارگذاری لرزه‌ای استفاده شده است. سپس، نتایج به دست آمده از روش ارائه‌‌‌ شده با ملاحظه سه سناریوی محدودیت‌ نیروی کنترلی مختلف با نتایج حالت کنترل نشده مورد مقایسه قرار گرفته است. نتایج مطالعات عددی حاکی از عملکرد مناسب فرآیند کنترلی پیشنهادی در کاهش پاسخ‌های لرزه‌ای بودند. همچنین جایگزینی عملگرهای با ظرفیت پایین به جای عملگرهای با ظرفیت بالا ضمن اقتصادی‌تر کردن فرآیند کنترل، از لحاظ پاسخ‌ها تغییر قابل‌توجهی در کاهش نسبت پاسخ‌های سیستم کنترل شده به کنترل نشده ایجاد نکردند. برای نمونه بیشترین تغییرات شاخص عملکردی نسبت دریفت (J1) برای حالت کنترل شده با محدودیت کنترلی به حالت کنترل شده بدون محدودیت کنترلی برای زلزله السنترو برابر با 4درصد بود، در حالیکه همین شرایط برای شاخص حداکثر نیروی کنترلی (J12) برابر با 78 درصد بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Kalman Filter-based model predictive control scheme with actuator saturation consideration for active control of a nine-story benchmark SAC building

نویسندگان [English]

  • Afshin Bahrami Rad 1
  • Mahdi Nouri 2
  • Javad Katebi 3
  • Seyyed Arash Mousavi Ghasemi 2
1 Ph.D candidate in Civil Engineering, Department of Civil Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
2 Department of Civil Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
3 Associate Professor Faculty of Civil Engineering, University of Tabriz,
چکیده [English]

Model predictive control is one of the optimal control methods for systems based on their behavior on future horizons. One of the salient features of this control method is the optimal consideration of control constraints in the system control process. Accurate states are required to perform an optimal control performance with this technique. On the other hand, state sensors are unable to provide accurate states due to the uncertainty in their structures. This shortcoming causes problems in the optimal control process. In this study, a discrete-time Kalman filter-based model predictive control scheme with actuator saturation consideration is presented. As a state estimator, the Kalman filter is able to provide more accurate states. On the other hand, the application of performance constraints in the control process causes the saturation of the actuators to be optimally regarded. In the present study, to investigate the effectiveness of the proposed control method in reducing seismic responses, a nine-story benchmark steel structure (SAC) under seismic excitation is utilized. Then, the results obtained from the proposed method considering three different control force constraint scenarios are compared with the results of the uncontrolled case. The results of numerical studies demonstrate the appropriate performance of the proposed control process in reducing seismic responses. Also, the replacement of low-capacity actuators with high-capacity ones, while making the control process more economical, do not significantly change the other responses quantity. For example, the highest change in the Drift Ratio Index (J1) for the controlled case with control force constraints to the controlled case without control force constraints for the Elcentro earthquake is by up to 4%, while the same conditions for the maximum control force index (J12) is 78%.

کلیدواژه‌ها [English]

  • Model predictive Control
  • Kalman Filter
  • Actuator Saturation
  • Benchmark Building (SAC)
  • State Sensor
[1] Wang, L. (2009). Model predictive control system design and implementation using MATLAB®. Springer Science & Business Media.
[2] Mei, G., Kareem, A., & Kantor, J. C. (2001). Real‐time model predictive control of structures under earthquakes. Earthquake engineering & structural dynamics, 30(7), 995-1019.
[3] Mei, G., Kareem, A., & Kantor, J. C. (2002). Model predictive control of structures under earthquakes using acceleration feedback. Journal of engineering Mechanics, 128(5), 574-585.
[4] Mei, G., Kareem, A., & Kantor, J. C. (2004). Model predictive control of wind-excited building: Benchmark study. Journal of engineering mechanics, 130(4), 459-465.
[5] Lana, C., & Rotea, M. (2008). Desensitized model predictive control applied to a structural benchmark problem. IFAC Proceedings Volumes, 41(2), 13188-13193.
[6]  Yang, C. S. W., Chung, L. L., Wu, L. Y., & Chung, N. H. (2011). Modified predictive control of structures with direct output feedback. Structural Control and Health Monitoring, 18(8), 922-940.
[7] Chen, Y., Zhang, S., Peng, H., Chen, B., & Zhang, H. (2017). A novel fast model predictive control for large-scale structures. Journal of Vibration and Control, 23(13), 2190-2205.
[8] Peng, H., Li, F., Zhang, S., & Chen, B. (2017). A novel fast model predictive control with actuator saturation for large-scale structures. Computers & Structures, 187, 35-49.
[9] Peng, H., Chen, Y., Li, E., Zhang, S., & Chen, B. (2018). Explicit expression-based practical model predictive control implementation for large-scale structures with multi-input delays. Journal of Vibration and Control, 24(12), 2605-2620.
[10] Farina, M., Giulioni, L., & Scattolini, R. (2016). Stochastic linear model predictive control with chance constraints–a review. Journal of Process Control, 44, 53-67.
[11] Mayne, D. (2016). Robust and stochastic model predictive control: Are we going in the right direction?. Annual Reviews in Control, 41, 184-192.
[12] Mesbah, A. (2016). Stochastic model predictive control: An overview and perspectives for future research. IEEE Control Systems Magazine, 36(6), 30-44.
[13] Heirung, T. A. N., Paulson, J. A., O’Leary, J., & Mesbah, A. (2018). Stochastic model predictive control—how does it work?. Computers & Chemical Engineering, 114, 158-170.
[14] Seron, M. M., Goodwin, G. C., & Carrasco, D. S. (2019). Stochastic model predictive control: Insights and performance comparisons for linear systems. International Journal of Robust and Nonlinear Control, 29(15), 5038-5057.
[15] Patan, K. (2018). Two stage neural network modelling for robust model predictive control. ISA transactions, 72, 56-65.
[16] Luo, J., Jin, K., Wang, M., Yuan, J., & Li, G. (2017). Robust entry guidance using linear covariance-based model predictive control. International Journal of Advanced Robotic Systems, 14(1), 1729881416687503.
[17] Lee, J. H. (2014). From robust model predictive control to stochastic optimal control and approximate dynamic programming: A perspective gained from a personal journey. Computers & chemical engineering, 70, 114-121.
[18] Simon, D. (2006). Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons.
[19] Gibbs, B. P. (2011). Advanced Kalman filtering, least-squares and modeling: a practical handbook. John Wiley & Sons.
[20] Song, Y., Fang, X., & Diao, Q. (2016). Mixed H 2/H∞ distributed robust model predictive control for polytopic uncertain systems subject to actuator saturation and missing measurements. International Journal of Systems Science, 47(4), 777-790.
[21] Camacho, E. F., & Alba, C. B. (2013). Model predictive control. Springer Science & Business Media.
[22] Ohtori, Y., Christenson, R. E., Spencer Jr, B. F., & Dyke, S. J. (2004). Benchmark control problems for seismically excited nonlinear buildings. Journal of engineering mechanics, 130(4), 366-385.
[23] Cha, Y.J. (2010). Structural control architecture optimization for 3-D systems using advanced multi-objective genetic algorithm. Doctoral dissertation. Texas A & M University.
[24] Cha, Y.J., Agrawal, A.K., Kim, Y., & Raich, A.M. (2012). Multi-objective genetic algorithms for cost-effective distributions of actuators and sensors in large structures. Expert Systems with Applications, 39(9), 7822-7833.