بررسی آزمایشگاهی عملکرد میراگر جرمی کوک شده در سازه فولادی تحت زلزله های مقیاس شده و تخمین پارامترهای مودال میراگر و سازه

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی عمران، دانشگاه رازی، کرمانشاه، ایران

2 دانشیار، گروه مهندسی عمران، دانشگاه رازی، کرمانشاه، ایران

3 استاد، گروه مهندسی عمران و زیرساخت مهندسی، دانشگاه وسترن سیدنی، استرالیا

چکیده

در طول سالیان اخیر کاربرد میراگرهای جرمی برای سازه های در برابر بارهای محیطی یا لرزه ای افزایش پیدا کرده است. یک گام مهم در طراحی و کاربرد میراگرهای جرمی، تخمین پارامترهای مودال است که همواره با مشکلاتی همراه بوده است. در این مقاله تلاش شده چارچوبی برای تخمین پارامترهای مودال میراگر جرمی؛ با ترکیب مدلهای آزمایشگاهی روی میز لرزه و تکنیک آنالیز مودال، به عنوان مثال روش تجزیه فرکانسی؛ ارائه شود. برای این منظور مطالعات آزمایشگاهی روی قاب پنج طبقه فولادی دارای میراگرهای جرمی با نسبت جرمی 01/0 و1/0 که در معرض تحریک دو زلزله مقیاس شده کوبه (Kobe ) و ایمپریال ولی ( Imperial valley) قرار گرفته اند، صورت گرفته است. همچنین پاسخهای سازه در حین زلزله با کمک سنسورهای که روی سازه نصب شده، ثبت شده و با کمک پاسخهای به دست آمده، مشخصات دینامیکی سازه دارای میراگر جرمی با کمک روش آنالیز مودال آزمایشگاهی (Operational Modal Analysis ) تخمین زده می شود. در این مقاله از روش تجزیه فرکانسی (Frequency Domain Decomposition ) برای تخمین پارامترهای دینامیکی میراگر استفاده شد. همچنین نسبت میرایی به دست آمده از روش تجزیه فرکانسی با مقادیر روش کلاسیک عددی مقایسه گردیده و مشاهده شد که روش مذکور توانایی مناسبی در برآورد پارامترهای دینامیکی میراگر دارد. این مقاله همچنان نشان میدهد که تحریک سازه آزمایشگاهی روی میز لرزه چنانچه همراه با تحلیل مودال آزمایشگاهی باشد، میتواند موفقیت زیادی در طراحی میراگرهای جرمی داشته باشد. همچنان محققان میتوانند با دقت بالایی پاسخهای سازه را در شرایط واقعی سازه و زلزله تخمین زده و در عین حال با صرف هزینه کم برای ساخت مدلهای آزمایشگاهی میراگر جرمی، میتوان پارامترهای بهینه میراگر جرمی را به دست آورد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental Investigation on the Performance of Tuned Mass Damper Embedded on Steel Frame under earthquake excitation and Estimation of the Modal Parameters

نویسندگان [English]

  • Fatemeh rahimi 1
  • Reza Aghayari 2
  • Bijan Samali 3
1 Visiting research fellow
2 Associate professor, Razi University, Kermanshah, Iran
3 Professor of Computing, Engineering and Mathematics Faculty, Western Sydney University, Sydney, Australia
چکیده [English]

Tuned mass dampers (TMDs) are being increasingly used for protection of structures against seismic and environmental loads. An important step in design and application of TMDs is the evaluation of TMD parameter which can cause be associated with serious difficulties. In this paper, we attempt to provide a framework to evaluate the modal parameters of TMDs using a combination of experimental test on shake table and a relatively recent modal analysis technique, namely Frequency Domain Decomposition (FDD). In order to achieve this, a series of test were conducted on a 5-storey steel frame was subjected to excitations from two scaled earthquakes (Imperial Valley and Kobe) ) while damped using two TMDs with mass ratios of 0.01 and 0.1.Mounted instrumentations recorded the structural response during the earthquakes and the recorded response was then used for an operational modal analysis (OMA) in order to estimate the dynamic characteristics of the TMDs. The FDD technique was used in this paper which was employed to estimate the parameters of TMDs. The damping ratios obtained from FDD method was compared with classical methods to verify its accuracy and capabilities in extraction of the modal parameters of TMDs. This paper shows that the use of shake table experiments coupled with the post-experiment modal analysis can be successfully used in TMD design and enables the researchers and practitioners to accurately estimate and test the response of the structures under relatively realistic conditions, which consequently allows low-cost testing of TMDs for optimum TMD selection.

کلیدواژه‌ها [English]

  • Tuned mass damper
  • Response
  • Natural frequency
  • Damping Ratio
  • Frequency Domain Decomposition
[1]  Elias, S. and V. Matsagar (2018). Wind response control of tall buildings with a tuned mass damper. Journal of Building Engineering, 15, 51-60.
[2]  Lu, X., Q. Zhang, D. Weng, Z. Zhou, S. Wang, S.A. Mahin, S. Ding, and F. Qian (2017). Improving performance of a super tall building using a new eddy‐current tuned mass damper. Structural Control and Health Monitoring, 24 (3), e1882.
[3]  Casado, C.M., I.M. Díaz, J. De Sebastián, A.V. Poncela, and A. Lorenzana (2013). Implementation of passive and active vibration control on an in‐service footbridge. Structural Control and Health Monitoring, 20 (1), 70-87.
[4]  Gill, D., S. Elias, A. Steinbrecher, C. Schröder, and V. Matsagar (2017). Robustness of multi-mode control using tuned mass dampers for seismically excited structures. Bulletin of Earthquake Engineering, 15 (12), 5579-5603.
[5]  Qin, S., J. Kang, and Q. Wang (2016). Operational modal analysis based on subspace algorithm with an improved stabilization diagram method. Shock and Vibration, 2016.
[6]  Zhou, H., K. Yu, Y. Chen, R. Zhao, and Y. Wu (2018). Output-only modal estimation using sparse component analysis and density-based clustering algorithm. Measurement, 126, 120-133.
[7]  Sadhu, A., S. Narasimhan, and J. Antoni (2017). A review of output-only structural mode identification literature employing blind source separation methods. Mechanical Systems and Signal Processing, 94, 415-431.
[8]  Cunha, A. and E. Caetano (2006). Experimental modal analysis of civil engineering structures.
[9]  Cara, J., A. Magdaleno, and A. Lorenzana (2017). Input/output versus output only modal ana-lysis of a stress-ribbon footbridge. In: IOMAC 2017–7th International Operational Modal Analysis Conference. 2017. Ingolstadt, Germany.
[10]        Lardies, J. and S. Gouttebroze (2002). Identification of modal parameters using the wavelet transform. International Journal of Mechanical Sciences, 44 (11), 2263-2283.
[11]        Slavič, J., I. Simonovski, and M. Boltežar (2003). Damping identification using a continuous wavelet transform: application to real data. Journal of Sound and Vibration, 262 (2), 291-307.
[12]        Le, T.-P. and P. Paultre (2013). Modal identification based on the time–frequency domain decomposition of unknown-input dynamic tests. International Journal of Mechanical Sciences, 71, 41-50.
[13]        Tarinejad, R. and M. Damadipour (2014). Modal identification of structures by a novel approach based on FDD-wavelet method. Journal of Sound and Vibration, 333 (3), 1024-1045.
[14]        Tarinejad, R. and M. Damadipour (2016). Extended FDD-WT method based on correcting the errors due to non-synchronous sensing of sensors. Mechanical Systems and Signal Processing, 72, 547-566.
[15]        Le, T.-P. and P. Argoul (2016). Modal identification using the frequency-scale domain decomposition technique of ambient vibration responses. Journal of Sound and Vibration, 384, 325-338.
[16]        Zhang, Z. (2020). Optimal tuning of the tuned mass damper (TMD) for rotating wind turbine blades. Engineering Structures, 207.
[17]        Yang, F., R. Sedaghati, and E. Esmailzadeh (2015). Optimal design of distributed tuned mass dampers for passive vibration control of structures. Structural Control and Health Monitoring, 22 (2), 221-236.
[18]        Brincker, R., L. Zhang, and P. Andersen (2000). Modal identification from ambient responses using frequency domain decomposition. In: 18th International Modal Analysis Conference (IMAC), San Antonio, Texas.
[19]        Parloo, E., P. Verboven, P. Guillaume, and M. Van Overmeire (2002). Sensitivity-based operational mode shape normalisation. Mechanical Systems and Signal Processing, 16 (5), 757-767.
[20]        Brock, J.E. (1946). A note on the damped vibration absorber. ASME Journal of Applied Mechanics, 13 (4), A-284.
[21]        Krenk, S. (2005). Frequency analysis of the tuned mass damper. ASME Journal of Applied Mechanics, 72 (6), 936-942.
[22]        Krenk, S. and J. Høgsberg (2009). Optimal resonant control of flexible structures. Journal of Sound and Vibration, 323 (3-5), 530-554.
[23]        Zilletti, M., S.J. Elliott, and E. Rustighi (2012). Optimisation of dynamic vibration absorbers to minimise kinetic energy and maximise internal power dissipation. Journal of Sound and Vibration, 331 (18), 4093-4100.
[24]        Kordi, F. and J. Alamatian (2019). Analytical Method for Designing the Tuned Mass Damper Based on the Complex Stiffness Theory. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 43 (4), 673-684.