بررسی عددی رفتار دیوار برشی فولادی نازک به همراه ورق اتصال جاذب انرژی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد نور، نور، ایران

2 گروه مهندسی عمران، دنشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد نور، نور، ایران

3 دانشکده فنی و مهندسی، دانشگاه دامغان، ایران

چکیده

دیوارهای برشی فولادی در کنار مزایای ذاتی شکل‌پذیر بودن و افزایش جذب انرژی سیستم باربرجانبی، دارای نقص‌هایی نظیر کمانش در مراحل اولیه بارگذاری و ایجاد تقاضای زیاد نیروی برشی برای ستون می‌باشند. در راستای برطرف نمودن این موارد، اتصال خمشی جدید با استفاده از ورق فولادی ذوزنقه‌ای شکل در قالب مدل‌های عددی سیستم دیوار برشی فولادی تحت بارگذاری مونوتونیک و چرخه‌ای مورد بررسی قرار می‌گیرد. هدف اصلی از بررسی این مورد، ارائه‌ی یک سیستم از دیوار برشی فولادی با ضخامت کم است که ظرفیت و جذب انرژی مشابه با نمونه‌ی اتصال مستقیم باشد و در عین حال، ناحیه‌ی مفصل پلاستیک در ورق اتصال متمرکز شود و این قطعه همانند یک فیوز عمل نماید. برخلاف روش مرسوم در سیستم‌های دیوار برشی فولادی، اتصال ورق دیوار فولادی به ستون برقرار نشده است و از سخت‌کننده‌های جانبی عمودی برای ارتقاء عملکرد آن استفاده شده است. همچنین از سه ضخامت مختلف برای ورق اتصال استفاده شده است. مدل عددی المان محدود با هشت نمونه‌ی آزمایشگاهی اعتبارسنجی شد و از نظر ظرفیت باربری، سختی الاستیک و مود تسلیم تطبیق مناسبی برقرار شد. نتایج تحلیل‌های استاتیکی غیرخطی بر روی مدل‌ها توسعه داده شده نشان دادند که استفاده از ورق اتصال توانست همانند یک عضو جاذب انرژی عمل نماید و المان‌های مرزی را از ورود به ناحیه‌ی پلاستیک باز دارد. از این‌رو استفاده از المان‌ ستون مرزی با ابعاد کمتر امکان‌پذیر است. همچنین نیازی به رعایت ضابطه‌ی تیرضعیف-ستون قوی و استفاده از ورق‌های پیوستگی یا مضاعف در چشمه‌ی اتصال ستون نیست. در نهایت، مشخص شد که روابط ارائه شده در آئین‌نامه‌ی AISC برای تخمین زاویه‌ی میدان کششی و ظرفیت برشی 7 تا 25 درصد کمتر از واقعیت می‌باشد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical investigation of thin steel plate shear wall behaviour equipped with energy absorption connection plate

نویسندگان [English]

  • Seyed Morteza Salimi 1
  • Sepideh Rahimi 2
  • Mohamad Hoseinzadeh 1
  • Mehdi Ebadi Jamkhaneh 3
1 Department of Civil Engineering, School of Engineering, Islamic Azad University Nour Branch, Nour, Iran
2 Department of Civil Engineering, School of Engineering, Islamic Azad University Nour Branch, Nour, Iran
3 School of Engineering, Damghan University, Iran
چکیده [English]

Although steel plate shear walls have the inherent advantages of formability and increasing the energy absorption of the lateral load system, there are some shortcomings such as buckling in the early stages of loading and high demand for shear force of the column. In order to address these cases, a new moment connection using steel trapezoidal plate in the form of numerical models of steel shear wall system under monotonic loading and cycles is presented. The main aim of this study is to provide a system of low-thickness steel shear wall that has the same capacity and energy absorption in accordance with the direct connection sample, while at the same time concentrate the plastic joint area on the connection plate. The connection plate acts like a fuse. In spite of conventional steel shear wall systems, the connection of the steel wall plate to the column has not been established and vertical lateral stiffeners have been used to improve its performance. Also, three different thicknesses used for the connection plate. The finite element numerical model was validated with eight test specimens and a good accuracy was established in terms of load-bearing capacity, elastic stiffness, and failure mode. The results of nonlinear static analyses on the developed models showed that the use of the connection plate was able to act as an energy-absorbing member and prevent the boundary elements from entering the plastic status. Therefore, the use of lower cross-section of column elements is possible. There is also no need to follow a weak beam- strong column rule and to use continuous or doubler plates in the panel zone of the column. Finally, it was found that the relationships presented in the AISC regulations are less than 7% to 25% for estimating the angle of the tensile field and the shear capacity.

کلیدواژه‌ها [English]

  • Steel plate shear wall
  • Load-bearing capacity
  • Elastic stiffness
  • Finite element model
  • Connection plate
  • Qu, B., et al., Testing of full-scale two-story steel plate shear wall with reduced beam section connections and composite floors. Journal of structural engineering, 2008. 134(3): p. 364-373.
  • Sabouri-Ghomi, S., C.E. Ventura, and M.H. Kharrazi, Shear analysis and design of ductile steel plate walls. Journal of Structural Engineering, 2005. 131(6): p. 878-889.
  • Hitaka, T. and C. Matsui, Experimental study on steel shear wall with slits. Journal of Structural Engineering, 2003. 129(5): p. 586-595.
  • Driver, R.G., et al., Cyclic test of four-story steel plate shear wall. Journal of Structural Engineering, 1998. 124(2): p. 112-120.
  • Basler, K. and B. Thürlimann, Strength of plate girders in bending. 1960: Lehigh University, Fritz Engineering Laboratory.
  • ANSI, A., AISC 341-05 ‘‘Seismic provisions for structural steel buildings.’’. American Institute of Steel Construction Inc, American Institute of Steel Construction, Chicago, IL, 2005.
  • Association, C.S., CAN/CSA-S16. 1-M89. Limit States Design of Steel Structures. 1990: Association canadienne normalisation.
  • Council, B.S.S., NEHRP recommended provisions for seismic regulations for new buildings and other structures (FEMA 450). Washington, DC, 2003.
  • Wagner, H., Flat Sheet Metal Girders with Very Thin Webs, Part III: Sheet Metal Girders with Spars Resistant to Bending—The Stress in Uprights—Diagonal Tension Fields. National Advisory Committee for Aeronautics, Washington, DC, 1931.
  • Timler, P.A. and G.L. Kulak, Experimental study of steel plate shear walls.
  • Driver, R.G., U.o.A.D.o. Civil, and E. Engineering, Seismic behaviour of steel plate shear walls. 1997: Department of Civil and Environmental Engineering, University of Alberta ….
  • Lubell, A., Performance of unstiffened steel plate shear walls under cyclic quasi-static loading. MA Sc. 1997, Thesis, Department of Civil Engineering, University of British Columbia ….
  • Vian, D., et al., Special perforated steel plate shear walls with reduced beam section anchor beams. I: Experimental investigation. Journal of Structural Engineering, 2009. 135(3): p. 211-220.
  • Purba, R. and M. Bruneau, Finite-element investigation and design recommendations for perforated steel plate shear walls. Journal of structural engineering, 2009. 135(11): p. 1367-1376.
  • Sabouri-Ghomi, S. and S.R.A. Sajjadi, Experimental and theoretical studies of steel shear walls with and without stiffeners. Journal of constructional steel research, 2012. 75: p. 152-159.
  • Machaly, E.B., S.S. Safar, and M.A. Amer, Numerical investigation on ultimate shear strength of steel plate shear walls. Thin-Walled Structures, 2014. 84: p. 78-90.
  • Zhao, Q., Sun, J., Li, Y., & Li, Z. (2017). Cyclic analyses of corrugated steel plate shear walls. The Structural Design of Tall and Special Buildings26(16), e1351.
  • Ashrafi, H. R., Beiranvand, P., Pouraminian, M., & Moayeri, M. S. (2018). Examining the impact of sheet placement and changes in waves characteristics on behavior of wavy steel shear wall. Case Studies in Construction Materials9, e00180.
  • Du, Y., et al., Seismic performance of a repaired thin steel plate shear wall structure. Journal of Constructional Steel Research, 2018. 151: p. 194-203.
  • Ghamari, A., Akbarpour, A., & Ghanbari, A. (2019). Improving behavior of semi-supported steel plate shear walls. Journal of Central South University26(10), 2891-2905.
  • Zamani Beydokhti, E., & Khatibi, H. (2020). Improving Cyclic Behavior of Steel Plate Shear Walls with Elliptical Perforations. Civil Engineering Infrastructures Journal53(1), 89-102.
  • Azandariani, M. G., Gholhaki, M., & Kafi, M. A. (2020). Experimental and numerical investigation of low-yield-strength (LYS) steel plate shear walls under cyclic loading. Engineering Structures203, 109866.
  • AISC, A., AISC 341-10, seismic provisions for structural steel buildings. Chicago, IL: American Institute of Steel Construction, 2010.
  • ANSI, B., AISC 360-16, Specification for Structural Steel Buildings. Chicago AISC, 2016.
  • Eatherton, M. Design and construction of steel plate shear walls. in Proceedings of the Eighth US National Conference on Earthquake Engineering. 2006.
  • Horne, M.R., and Morris, L. J. , Plastic design of low-rise frames. The MIT Press, 1982.
  • Sabouri-Ghomi, S. and T. Roberts, Nonlinear dynamic analysis of steel plate shear walls including shear and bending deformations. Engineering Structures, 1992. 14(5): p. 309-317.
  • Guo, B., Q. Gu, and F. Liu, Experimental behavior of stiffened and unstiffened end-plate connections under cyclic loading. Journal of Structural Engineering, 2006. 132(9): p. 1352-1357.
  • Park, H.-G., et al., Framed steel plate wall behavior under cyclic lateral loading. Journal of structural engineering, 2007. 133(3): p. 378-388.
  • Abaqus, V., 14 Documentation. Dassault Systemes Simulia Corporation, 2014. 651: p. 6.2.
  • Ramberg, W., & Osgood, W. R. (1943). Description of stress-strain curves by three parameters.
  • Menegotto, M. Method of analysis for cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending. in of IABSE symposium on resistance and ultimate deformability of structures acted on by well defined repeated loads. 1973.
  • Qian, X. and A. Astaneh-Asl, Development of a high-performance steel plate shear wall system. International Journal of Earthquake and Impact Engineering, 2016. 1(1-2): p. 57-80.
  • Choi, I.-R. and H.-G. Park, Steel plate shear walls with various infill plate designs. Journal of structural engineering, 2009. 135(7): p. 785-796.
  • Thorburn, L.J., C. Montgomery, and G.L. Kulak, Analysis of steel plate shear walls.
  • Vatansever, C. and N. Yardimci, Experimental investigation of thin steel plate shear walls with different infill-to-boundary frame connections. Steel and Composite Structures, 2011. 11(3): p. 251-271.