بررسی احتمالاتی ظرفیت فروریزش لرزه ای سازه های سه بعدی قاب خمشی فولادی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه عمران، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران

2 گروه عمران، دانشکده مهندسی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

3 گروه عمران، دانشکده مهندسی، واحد گرمسار، دانشگاه آزاد اسلامی ، گرمسار، ایران

چکیده

تعیین دقیق لحظه‌ی فروریزش سازه‌ها به‌واسطه‌ی تحلیل‌های غیرخطی یکی از چالش‌های مهم مهندسین در طرح لرزه‌ای ساختمان‌ها می‌باشد. اگرچه آسیب‌های سازه‌‌ای در سطوح مختلف قابل ارزیابی هستند، اما فروریزش ساختمان‌ها ازجمله رخدادهای ناگوار در صنعت ساخت‌وساز محسوب می‌گردد که در آن تلفات به بیشترین مقدار ممکن خود می‌رسد. در این تحقیق، سازه‌های قاب خمشی فولادی سه‌بعدی با شکل‌پذیری ویژه 4، 8 و 12طبقه تحت تحلیل‌های غیرخطی موردنظر شامل تحلیل‌های استاتیکی غیرخطی بار افزون و دینامیکی غیرخطی افزایشی قرارگرفته و در نهایت به‌منظور بررسی ظرفیت فروریزش آن‌ها از منحنی‌های شکست استفاده‌شده است. زلزله‌های موردنظر نیز بر اساس دستورالعمل FEMA P695 شامل22 زوج رکورد دور از گسل، 14زوج رکورد نزدیک گسل بدون پالس و 14 زوج شتاب‌نگاشت نزدیک گسل با پالس در نظر گرفته‌شده‌اند. مدل‌ها به‌صورت سه‌بعدی در نرم‌افزارETABS 2016 طراحی‌شده‌اند و کنترل ضوابط لرزه‌ای آن‌ها بر اساس آیین‌نامه‌های معتبر و استاندارد 2800 ویرایش چهارم به‌طور کامل صورت گرفته است. مدل‌های غیرخطی سازه‌ها نیز به‌صورت سه‌بعدی در نرم‌افزار‌‌ OpenSees2.5.0 ایجادشده‌اند. اثر زوال سختی و مقاومت الما‌ن-های سازه نیز بر اساس نتایج مدل‌های آزمایشگاهی لحاظ شده و ظرفیت فروریزش سازه‌های سه‌بعدی قاب‌ خمشی فولادی ویژه به‌صورت احتمالاتی بررسی گردیده است. نتایج نشان می‌دهد که ظرفیت فروریزش سازه‌های 4، 8 و 12 طبقه تحت زلزله‌های دور از گسل بیشترین و تحت زلزله‌های نزدیک گسل با پالس کمترین است و در بین آن‌ها سازه‌ی کوتاه مرتبه‌ی 4 طبقه، ظرفیت فروریزش کمتری دارد. برای مثال ظرفیت فروریزش سازه‌ی 4 طبقه در سطح آماری 84 درصد، تحت زلزله‌های نزدیک گسل با پالس، بدون پالس و دور از گسل به ترتیب g 21/3، g 61/3 و‌ g14/4 می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Probabilistic Assessment of Seismic Collapse Capacity of 3D Steel Moment-Resisting Frame Structures

نویسندگان [English]

  • Abbasali Sadeghi 1
  • Seyede Vahide Hashemi 2
  • Kourosh Mehdizadeh 3
1 Department of Civil Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
2 Department of Civil Engineering, Engineering Faculty, Sistan and Baluchestan University, zahedan, Iran
3 Department of Civil Engineering, Engineering Faculty, Garmsar Branch, Islamic Azad University, Garmsar, Iran
چکیده [English]

Accurate determination of the collapse moment of structures by nonlinear analyses is one of the major challenges for engineers in the seismic design of buildings. Although, structural damage can be assessed at various levels, the collapse of buildings is one of the worst events in the construction industry where casualties reach their maximum. In this research, 3D steel moment-resisting frame structures with 4, 8 and 12 story with special ductility have been subjected to nonlinear analysis including nonlinear static analysis, incremental nonlinear dynamic analysis and finally to investigate their collapse capacity, the fragility curves were used and earthquakes were considered according to FEMA P695 instruction including a pair of 22 far fault records, 14 near fault records with pulse and 14 near fault records without pulse. The models are 3D structures designed in ETABS 2016 software. The design of the structures and their seismic criteria control are based on fully validated according to standard 2800 Fourth Edition. Nonlinear structural models are also created in 3D state in OpenSees2.5.0 software. The effect of stiffness and strength deterioration is considered based on the results of the experimental models and the collapse capacity of the three-dimensional structures of the special steel moment-resisting frame is investigated probabilistically. The results show that the collapse capacity of 4, 8 and 12-story structures is the highest under far fault earthquakes and the lowest under near fault earthquakes without pulse and among the low-rise structures, The 4-story has less collapse capacity. For example, in the 4-story structure, the structural collapse capacity at statistical level 84% under near fault with and without pulse and far fault ground motions is 3.21 g, 3.61 g and 4.14 g, respectively.

کلیدواژه‌ها [English]

  • Collapse Capacity
  • Steel Moment-Resisting Frame
  • Special Ductility
  • 3D
  • Incremental Dynamic Analysis
  • FEMA P695 Instruction
  • Fragility curve
  • Stiffness and Strength Deterioration
[1] Liu, Y., Xu, L. and Grierson, D. E. (2003). Performance of buildings under abnormal loading. In Proceedings of the Response of Structures to Extreme Loading Conference, Toronto, Canada.
[2] Kaewkulchai, G. and Willamson, E.B. (2003).  Progressive collapse behaviour of planar frame structures. In Proceedings of the Response of Structures to Extreme Loading Conference, Toronto, Canada.
[3] Adam, C., Ibarra, L. F. and Krawinkler, H. (2004). “Evaluation of P-delta effects in non-deteriorating MDOF structures from equivalent SDOF systems,” Proc., 13th World Conf. on Earthquake Engineering, Vancouver, B.C., Canada, Paper No. 3407.
[4] Miranda, E. and Akkar, D. (2003). Dynamic instability of simple structural systems. Journal of Structural Engineering, 129 (12), pages 1722–1726.
[5] Williamson, E.B. (2003). Evaluation of damage and P-D effects for systems under earthquake excitation. Journal of Structural Engineering, 129(8), pages 1036-1046.
[6] Bernal, D. (1987). Amplification factors for inelastic dynamic P-Delta effects in earthquake analysis. Journal of Earthquake Engineering & Structural Dynamics, 15(5), pages 635-651.
[7] Bernal, D. (1992). Instability of buildings subjected to earthquakes. Journal of Structural Engineering, 118(8), pages 2239-2260.
[8] Bernal, D. (1998). Instability of buildings during seismic response. Journal of Engineering Structures, 20, 4-6, pages 496-502.
[9] Bernal, D., Nasseri, A. and Bulut, Y. (2006). Instability inducing potential of near fault ground motions. SMIP 06 Seminar Proceedings, pages 41-62.
[10] Rahnama, M. and Krawinkler, H. (1993). Effect of soft soils and hysteresis models on seismic design spectra. John A. Blume Earthquake Engineering Research Centre Report No. 108, Department of Civil Engineering, Stanford University.
[11] Song, J. and Pincheira, J. (2000). Spectral displacement demands of stiffness and strength degrading systems. Earthquake Spectra, 16(4), pages 817-851.
[12] Ibarra, L., Medina, R. and Krawinkler, H. (2002). Collapse assessment of deteriorating SDOF systems. Proceedings of the 12th European Conference on Earthquake Engineering, London, UK, Paper 665, Elsevier Science Ltd.
 [13] Ibarra, L. F. and Krawinkler, H., (2005). Global collapse of frame structures under seismic excitations.  Report No. PEER 2005/06, Pacific Earthquake Engineering Research Centre, University of California at Berkeley, Berkeley, California.
[14] Vamvatsikos, D. and Cornell, C.A., (2002). Incremental dynamic analysis. Journal of Earthquake Engineering & Structural Dynamics, 31(3), 491–514.
[15] Ibarra L. F., Medina R. A. and Krawinkler H., (2005). Hysteretic models that incorporate strength and stiffness deterioration.  Earthquake Engineering and Structural Dynamics, 34(12), pages. 1489-1511.
[16] Zareian, F. and Krawinkler, H. (2007). Assessment of probability of collapse and design for collapse safety. Earthquake Engineering and Structural Dynamics, 36(13), 1901-1914.
[17] Kato, B., Akiyama, H., Suzuki, H., and Fukuzawa, Y. (1973). Dynamic collapse tests of steel structural models. 5th World Conf. on Earthquake Engineering, Rome.
[18] Rodgers, J. and Mahin, S. (2006). Effects of Connection Fractures on Global Behaviour of Steel Moment Frames Subjected to Earthquakes. Journal of Structural Engineering, (ASCE), Vol. 132, No. 1, pages. 78-88.
[19] Kasai, K., Ooki, Y., Motoyui, S., Takeuchi, T. and Sato, E. (2007). E-Defence tests on full-scale steel buildings: Part 1- Experiments using dampers and isolators,” Proc. Structural Congress, ASCE, Long Beach,247-17.
[20] Tada, M., Ohsaki, M., Yamada, S., Motoyui, S. and Kasai, K. (2007). E-Defence tests on full-scale steel buildings: Part 3 − Analytical simulation of collapse.  Proc. Structures Congress 2007, ASCE, Long Beach, 247-19.
[21] Suita, K., Yamada, S., Tada, M. Kasai, K. Matsuoka, Y. and Sato, E. (2007), “E-Defence tests on full-scale steel buildings: Part 2 − Collapse experiments on moment frames,” Proc. Structures Congress 2007, ASCE, Long Beach,247-18.
[22] Lignos, D.G. and Krawinkler, H. (2009). Side-sway collapse of deteriorating structural systems under seismic excitations. Report no. TB 172. Stanford (CA): John A. Blume Earthquake Engineering Research Centre. Department of Civil and Environmental Engineering, Stanford University, 1-12.
[23] Lignos, D.G. and Krawinkler, H. (2011). Deterioration modelling of steel components in support of collapse prediction of steel moment frames under earthquake loading, Journal of Structural Engineering, 137 (11), 1291-1302.
[24] Lignos, D.G. and Krawinkler, H. (2010). A steel database for component deterioration of tubular hollow square steel columns under varying axial load for collapse assessment of steel structures under earthquakes. In Proceedings of the 7th International Conference on Urban Earthquake Engineering (7CUEE), Tokyo, Japan.
[25] E. Fereshtehnejad, M. Banazadeh and A. Shafieezadeh, (2016). System reliability-based seismic collapse assessment of steel moment frames using incremental dynamic analysis and Bayesian probability network, Engineering Structures, 118, 274-286.
[26] F.M. Nazri, P.Y. Ken, (2014). Seismic performance of moment resisting steel frame subjected to earthquake excitations. Front. Struct. Civ. Eng. 8, 19-25.
[27] A. Elkady, and D. G. Lignos, (2017). Full-Scale Cyclic Testing of Deep Slender Wide-Flange Steel Beam-Columns under Unidirectional and Bidirectional Lateral Drift Demands. 16th World Conference on Earthquake Engineering (16WCEE), Santiago, Chile, num. 944.
[28] Mehdizadeh, K., Karamodin, A., (2017). Probabilistic Assessment of Sidesway Collapse of Steel Moment Frames (Ordinary, Intermediate and Special) under Earthquake. Journal of Structural and Construction Engineering, Volume 4, No. 3, pages 129-147.
[29] Mehdizadeh, K., Karamodin, A., (2017). Evaluation the Possibility of the Occurrence of Progressive Collapse in Steel Moment Frames (Ordinary, Intermediate and Special) Due to Sudden Column Removal. Journal of Structural and Construction Engineering, Volume 5, No. 3, pages 85-105.
[30] Mehdizadeh, K., Karamodin, A., (2018). Investigation of the Effect of Uncertainty of the Ibara-Medina-Krawinkler Model Parameters on Seismic Collapse Capacity in Steel Moment Resisting Frames. Journal of Structural and Construction Engineering, Volume 6, No. 2, pages 45-62.
[31] Saberi, V., Saberi, H., Sadeghi, A., (2020). Collapse Assessment of Steel Moment Frames Based on Development of Plastic Hinges, Journal of Science and Technology, (In Persian).
[32] FEMA P 695. (2009). Quantification of Building Seismic Performance Factors. Washington, D.C. Federal Emergency Management Agency, USA.
[33] INBC. (2013). Design and Construction of Steel Structures. Tehran: Ministry of Housing and Urban Development, Iranian National Building Code, Part 10. (In Persian).
[34] INBC. (2013). Design Loads for Buildings. Tehran: Ministry of Housing and Urban Development, Iranian National Building Code, Part 6. (In Persian).
[35] BHRC. (2014). Iranian code of practice for seismic resistant design of buildings. Tehran: Building and Housing Research Centre, Standard No. 2800. (In Persian).
[36] Mazzoni, S., Mckenna, F., Scott, M. H. and Fenves, G. L. (2006). OpenSees Command Language Manual. http://OpenSEES. Berkeley.edu/OPENSEES/manuals/user manual/OpenSees Command Language Manual June 2006.pdf.
[37] Habibullah, A. (1997). ETABS-Three Dimensional Analysis of Building Systems. Manual. Computers and Structures Inc. Berkeley, California.
[38] Lignos, D.G. and Krawinkler, H. (2007). A database in support of modelling of component deterioration for collapse prediction of steel frame structures. In Proceeding of the ASCE Structures Congress, Long Beach CA, SEI institute.
[39] Gupta, A. and Krawinkler, H. (1999). Seismic Demands for Performance Evaluation of Steel Moment Resisting Frame Structures. Technical Report 132, The John A. Blume Earthquake Engineering Research Centre, Department of Civil Engineering, Stanford University, Stanford, CA. http://server2.docfoc.com/uploads/Z2015/12/26/JWVv1cW5w9/b9e07b8eadbb3936bc52f79b7df20534.pdf
[40]PEER Ground Motion Database, Pacific Earthquake Engineering Research Centre, Web Site: http://peer.berkeley.edu/peer_grouNd_motioN_database
[41] ­SeismoSignal, (2018). Constitutes a simple, yet efficient, package for the processing of strong-motion data.
[42] NIST. (2011) Research Plan for the Study of Seismic Behaviour and Design of Deep, Slender Wide Flange Structural Steel Beam-Column Member, NIST GCR 11-917-13; prepared by the NEHRP Consultants Joint Venture, a partnership of the Applied Technology Council and the Consortium of Universities for Research in Earthquake Engineering for the National Institute of Standards and Technology, Gaithersburg, Maryland.
[43] Zargar, S. and Medina, R.A. (2014). Hybrid Simulation of an Exterior Steel Column in a 20-Story Moment Resisting Frame. In Proceedings of the Second European Conference on Earthquake Engineering and Seismology, Istanbul, AUG 25-29.
[44] Commentary of Instruction for seismic Rehabilitation of Existing Buildings NO: 360.